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Abstract. The melting temperature of pure metals is calculated as a function of the relative
volume. The calculation of pressure—temperature phase diagrams and of composition—
temperature phase diagrams is discussed. The systematics of the distribution of the melting
temperatures of binary metallic compounds and alloys are considered. Ion-core pseudopotentials
have been derived through full-core atom calculations based on the Dirac equation and the points
of minimum and the points of maximum curvature of these have been plotted as a function of the
distance from the centre of the atom. The systematics evident in the plots allows a theoretical
prediction of the magnitude of the melting temperatures to be made.

1 Introduction

This paper is significant for the understanding of both the metallurgy and the physics
of metallic planetary cores. For the questions of the accretion mechanism of the
Earth, the gravitational segregation of the core and mantle of the Earth, and the
thermal regime of the Earth’s core (Ullmann and Walzer 1980; Jacobs 1987), it is
useful to subdivide the topic into the following partial problems:

—determination of the pressure —temperature phase diagram for one component, eg
iron;

—determination of the concentration —temperature binary phase diagrams for zero
pressure;

—determination of the melting temperature for an intermetallic compound or alloy
with a fixed ratio of the numbers of atoms, derived from ab initio calculations and the
systematics of the data that results from their arrangement in the periodic table. This
is the main objective of this paper. Cosmochemical, geomagnetic, seismological, and
other questions which are related to the overall topic, will not be treated in this paper.

2 Melting-point curve and pressure— temperature phase diagram

Frequent use has been made of Simon’s (1937) semiempirical formula for the
relationship between the melting temperature, Ty, and the pressure, P, for a uniform
phase of a material:

Pm - Tm ¢

w= (%) - v
where T, is the melting temperature at atmospheric pressure and P, is a pressure
constant.

Gilvarry (1956) has shown that this formula can be derived from a modification of
the Lindemann melting-point theory. He assumed that the mean-square value of the

amplitudes of the heat oscillations must reach a certain fixed percentage of the
distance between nearest neighbours. One has
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where v is the Griineisen parameter. The following statement generally applies:
at each point of the melting-point curve, the Gibbs free energies of the solid, Gioy,
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and of the liquid, Gjq, must be identical. Consequently, from the first law of
thermodynamics,

(E~TnS+PV)so1 = (E—TnS+PV)yg, 3)

where E is the internal energy, S is the entropy, and V is the volume. If the pressure
along the melting-point curve changes by dP, then dG,, = dGyq must always apply.
If the total differential of G is formed and dE—T,dS+PdV = 0 is substituted, one
obtains the Clausius —Clapeyron equation

AT _ (Vliq i Vsol)
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where L is the latent heat of melting. The three variables on the right-hand side of
equation (5) are all still dependent on the pressure. Now, in order to be able to define
explicitly the dependence of the melting temperature Ty, on the pressure P or on the
relative volume, x = V/V,, special assumptions have to be introduced. The melting
temperature depressions which are observed (eg for Ge, Ga, Sb, and Bi) are related
with all probability to phase transitions from loosely packed structures to more
densely packed ones. However, the interest here is in very high pressures and a dense
packing of spheres. In this section therefore, the Lindemann melting law is used:

14T, 2(y-9Y)
T—mv— B ()]

where B is the isothermal bulk modulus along the melting curve. For similar
purposes, Stacey and Irvine (1977), and Stevenson (1980) derived formulas for the
melting points. These formulas differ only slightly from the Lindemann law. To
calculate v I use the free volume theory of Vashchenko and Zubarev (1963). This
theory can also be derived from the assumption of purely central forces between the
atoms—with no special assumptions about the form of the interatomic potential being
required. « is given by

_(14B_5 2P\(; 4P\ o
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Since B = —xdP/dx, the only thing that is still required is an approximation of the

equation of state favourable for dense atom packings. I take model 1 of Ullmann and

Pan’kov (1976), which was found to be suitable compared with other models suggested
(Walzer et al 1979):

3By

P=_2-B1

[x(l—zp.)/s _ x'(1+3‘)/3]. (8)

By denotes the zero pressure bulk modulus and B, is the first derivative of the bulk
modulus with pressure at P = 0. From equation (6),

din Ty 1

dinx ‘2<§_7)‘ ©)
By use of the substitutions T, = ¢” and x = e, it is possible to exactly solve this
differential equation to give:

(6 = = _331 &+ ln{zgl:; exp [(2 ;Bl)

§] - 1} + constant. (10)
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From this follows the relationship between the melting temperature and the relative
volume x:

Tn _2B1=5 w-am)s _ 40-s, an

Tm,o " Bl -3

Walzer (1983) derived this formula using a completely different approach, namely
a dislocation model and an interatomic pair potential. Poirier (1986) also used a
dislocation model for melting in the geophysical field. Equation (11) has proven its
worth for modelling the melting of crystals that have a dense packing of spheres; in
every case, the experimental values are well approximated. In analogy with the
Leibfried number or the Bragg number, one forms a dimensionless quantity Qy:

_ R(ITmP
Qo = o)’ (12)

where Ry is the universal gas constant, p is the density, and Fy is the formula weight.
If the bulk modulus is plotted as a function of the melting temperature, one observes
quite unsystematic clouds of points at low pressures, but a linear relationship at high
pressures. Figure 1 shows a plot of Q, as a function of P, the formulae of this section

(Yo B R ' ] ' ' .

Baf

0.020 1

La

0.015

o] i, Jreleinigngsn . teneanin o Balinrre | IS
0 1 CMB 2 3 ICB CE
P[Mbar

Figure 1. The dimensionless quantity Q as a function of pressure, P, for the elements of the
sixth period. CMB corresponds to the pressure at the core —mantle boundary of the Earth,
ICB to the pressure at the inner core boundary, and CE to the pressure at the centre of the
Earth.
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having been substituted in equation (12). For the purpose of clarity, only the elements
of the sixth period are shown. Two bundles of curves are found for high pressures.
The lower bundle essentially comprises elements which already have fcc and hep
lattices at normal pressure. If one assumes the densest packing of spheres for the
Earth’s core—that is, for the region to the right of the vertical line CMB—one can
estimate Ty,/Fy without knowing the chemical composition. This is so because, from
geophysics, p and B are quite well known as functions of pressure and depth,
respectively. Meanwhile, for d-state metals, equation (8) can be replaced by a better
approximation. From a combination of the pseudopotential theory and muffin-tin
orbital theory, the total energy per ion, the equation of state, bulk modulus and its
derivatives, can be predicted in a practicable manner (Walzer 1987a, 1987b). It should
be emphasised again that the melting-point theory used here is tied to the existence of
the densest packing of spheres on the crystalline side of the curve.

With respect to the appropriate pressure —temperature phase diagram for iron, there is
no consensus among authors for the high-pressure range. For 330 GPa—ie for the
pressure on the inner-core boundary of the Earth—Brown and McQueen (1982), using
shock-wave experiments, measured a melting point of iron at (6200 + 500) K, whereas
estimates based on the Lindemann law yield 7850 K. With the help of extrapolations of
static experiments with a laser-heated diamond cell, Williams et al (1987) arrived at a
value of (7600 + 500) K, while Boehler (1986) obtained much lower values, so that
Anderson (1989) supposed that the 7 —e-liq triple point has much lower coordinate
values and that a third bce phase at the highest values of P and T has to be assumed for
the phase diagram of iron. This new suggestion is by no means uncontested.

3 Composition temperature phase diagrams and the calculation of the pseudopotentials

In the previous section it was shown that, even for pure materials such as iron, it is
difficult to correctly predict the pressure —temperature phase diagram when pressures are
higher than 100 GPa. In cosmochemical terms, it is most probable that iron is the
dominant component in the Earth’s core. Although within the framework of error
limits, the geophysically determined data on the speed of sound, bulk modulus, and
density in the inner core can be explained through the existence of pure iron, one or
several lighter alloying elements are necessary for the outer core. These could be
admixtures of sulphur, oxygen, magnesium, silicon, hydrogen, or other elements or
compounds. It is important to consider the composition temperature phase diagram
of alloys that are probable in a geochemical respect. Because, if the outer core of the
Earth is cooling down in the current epoch (Stevenson 1983), the liquidus will be
reached from above and there will be a partial solidification of iron, the solid iron will
sink into the liquid outer core and agglomerate onto the inner core. If, however, in
earlier geological epochs, the Earth had been heated up slowly on account of the then
greater radioactive heat production density (Walzer and Maaz 1983), the process
would formerly have taken place in the opposite direction. In both cases, the
consequence would be a compositional convection and the generation of the
geomagnetic field.

Many publications exist on binary phase diagrams. Therefore, the composition —
temperature phase diagrams obtained by many authors from experimental data and
thermochemical calculations have been arranged in a handbook-like manner, the
measurements having been conducted almost completely at normal pressure.
Kubaschewski (1982) confined herself to the technologically and geophysically
significant binary phase diagrams of iron. Miedema et al (1980) introduced a
semiempirical model of alloy cohesion. This model assigns only two coordinates to
each element: the average of the electron density at the boundary of the
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Wigner — Seitz unit cell, nws, and a parameter &*, which serves to describe the ionicity
in metals. On the basis of this empirical model, de Boer et al (1988) compiled the
binary phase diagrams, heat of formation, entropy of formation, etc for the transition
metal alloys. In this way, a very modern collection of experimental thermodynamic
data was created. For the physics of the planets, the knowledge of these composition
temperature phase diagrams is by no means sufficient. After all, although they change
by only small amounts for metallic alloys with moderately increasing pressures, this
is by no means certain for pressures exceeding 100 GPa. The usual empirical models
do not permit such a far-reaching extrapolation. Here, true first-principle calculations
are more promising. Pseudopotentials are used for this purpose, and an inclusion into
the calculation of tightly bound core states is thereby avoided. Many pseudopotentials
are definitely dependent on the environment. Thus, eg in the case of iron, they differ
from one another for small clusters and also for different alloys. For this reason one
should use pseudopotentials which, through norm conservation, have an optimum
transferability, and I shall base my considerations on the publications of Hamann et al
(1979), Bachelet et al (1982), and Walzer (1991). In the latter work, one can find the
considerations and formulae mentioned here summarised to explain the computer
programs developed by the author.

Based on relativistic quantum mechanics, bare-ion pseudopotentials, A};“m were
derived through full-core atom calculations. These potentials are functions of r, the
distance from the centre of the atom. The minima of these curves are each defined by
one number triple

Fm0: Um0, €m0; Tmi,VUml,€m1; Fpl,Upl, €pl; (13)

Fm2, Um2, €m2; ?'pz, Up2,€p2;  "m3; Um3, €m3;

where r always denotes the pseudopotential radius of the minimum, v is the potential,
and e is the genuineness. For e = 1, (r, v) is the first minimum of the
pseudopotential —radius curve, which is reached coming from the infinite r. Both
quantities are expressed in atomic units. The indices p and m denote, respectively,
spin up and spin down; allowance for the spin—orbit effects has been made by the
relativistic formulation of the theory. The indices 0, 1, 2, 3 denote the angular
momentum quantum number [ If the minimum of the curve in question is reached
only at r = 0, then e = 0. The pair of numbers (r, v) then represents the point where
simultaneously d’v/dr* > 0 and where, coming from infinite r, the curvature k,
becomes a maximum, with

29-3/2
d% dv

4 Plotting of numerical results

The norm-conserving pseudopotentials for three chemical elements are shown in
figure 2. With sodium no evidence of a relativistic splitting of the potentials can be
observed. With molybdenum, it can already be seen that the coupling between each
electron’s orbital angular momentum and spin not only results in different energies
and wave functions, but also in a splitting of the pseudopotentials. For the still
heavier rhenium, this is even more pronounced. The characteristic pairs of numbers
(r, v), discussed above, are marked on the curves with short strokes. They were also
determined with the use of a computer. In the following, 1:1 intermetallic
compounds and alloys have been examined. In order to represent the first and second
components, subscripts 1 and 2 have been added to the variables mentioned in
equations (13). Simple mathematical combinations have been formed from these
variables. These variables have been plotted and compared with measured values.
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The experimental values from 1364 materials have been taken exclusively from the
encyclopaedia of Villars and Calvert (1985); no value was excluded. This paper
serves to represent, above all, the distribution of the melting temperatures of the
intermetallic compounds and alloys. The radius melting temperature diagram
(figure 3) shows distinct systematics. In the upper left area, the compounds of two
transition metals (TT) are predominant; in the upper middle, the compounds of a
simple and of a transition metal (ST) are predominant; at the bottom and on the
lower right, only compounds and alloys of two simple metals (SS) each are present.
Figure 4 shows the T, systematics in a theoretically calculated radius—potential
diagram. If, for instance, a 1:1 intermetallic compound, which has not yet been
produced, is theoretically situated in the dense dark area to the left of the middle, very
high melting temperatures are probable. The entire distribution of the points is also
characteristic of other radius —potential diagrams.
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Figure 2. Pseudopotentials, v, for (a) sodium, (b) molybdenum, and (c) rhenium. The
distance, r, from the centre of the atom is plotted downwards. The numbers on the curves
denote the angular momentum quantum number /.
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Figure 3. Melting temperature, Ty, as a function of radius, $(rm21+rm22), for I = 2, The
symbols represent compounds and alloys of two transition metals (TT), of two simple metals
(SS) and of simple and transition metals (ST), as shown.
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For some diagrams, a simple function, F, has been used as one of the coordinates

with F = }(F, + F,) and
sp—1

F= lﬂﬁ_—l(’mnl — 1)omoy, (13)
where s, denotes the column in the periodic table, and ryo; and vy, are expressed in
atomic units. Figure 5 shows that a loose relationship exists between F and the
melting temperature. This is similarly true of 1:1 compounds and alloys of two
transition metals each (see figure 6 and table 1). Figure 7 shows'that the relationship
between F and the melting temperature is not quite as distinct, if all 1:1 compounds
of all elements of the fourth, fifth and sixth period are permitted without lanthanides.
The true significance of figure 7 becomes evident in figure 8, in which it is not the
crystal lattice but the subdivision into types TT, ST, and SS, which governs the
picture. One can easily recognise a triple division into areas in which only one type is
predominant. Figure 9 shows a plot of two simple combinations of radii which can be
calculated from the norm-conserving pseudopotentials, that is, ultimately, from the
quantum theory. It can be seen that the melting temperatures of the intermetallic
compounds and alloys exhibit distinct systematics, so that theoretical predictions are
possible for materials which have not yet been produced.
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Figure 4. Potential, (vma21 +vm22), as a function of radius, é(?’mgl‘i‘fmzz), for / = 2. Ranges
of melting temperature, Ty, are indicated.
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Figure 5. The quantity F as a function of melting temperature, Ty,. Only the pure elements
of the fourth, fifth and sixth period without rare-earth elements are shown.
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Figure 6. The quantity F as a function of melting temperature, Tp,,. All TT alloys and
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and are defined in table 1.

Table 1.
group of the crystal lattice.

The assignment of symbols for the

pace group and structure type of the crystals

plots in which the symbols express the space
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Figure 7. The quantity F as a function of melting temperature, Tp,. Only compounds and
alloys of two elements each of the fourth, fifth and sixth period without rare-earth elements
are plotted. The symbols denote the space group and structure type of the crystals and are
defined in table 1,



Melting temperature systematics of binary intermetallic compounds 43

. . .
. & b3
o T d * i
I + & ’0":.'\3;0 ¢ : ST
- AN Lol
16 | 2 g T3 : 4 S
o 4 e, e +
&, 4 Q: J
2 I TR 5 2ot
g 12 L R S '. 4+ » 4
g % LI
L o 4
E . .‘0?#3 B 0B 30 M Lig g
= 8| * . :f. R . o i N
b —’* " + -;;oh;*é):_,, |
S, Lt
4 kst ¥ A & ]
[ . * '-:"t* + %
© Feat o . 4]
1 i L ' - L L 1] i £
0 10 20 30
Tw/100 °C

Figure 8. The quantity F as a function of melting temperature, Ty,. The symbols represent
compounds and alloys of two transition metals (TT), of one simple and one transition metal
(ST), and of two simple metals (SS), as shown.
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Figure 9. The radial quantity %(rnm +rm22) as a function of the radial quantity 1 (rmo1 + rmo2)-
The ranges of melting temperature, T, are indicated.

5 Conclusions

Characteristic quantities have been derived from pseudopotentials with optimum
transferability. In diagrams where these quantities or simple functions of the same
have been plotted on the axes, one can observe a systematic distribution of the melting
temperatures of intermetallic compounds and alloys. As a first step, the significance
of the phase diagrams for the physics of the planetary cores has been considered.
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