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Abstract. A pseudopotential theory has been developed further and used for intermetallic
compounds and alloys. This approach is based on relativistic quantum mechanics.
I-dependent radii and characteristic pseudopotential constants have been newly obtained by
means of this theory. They, and two other dual coordinates that can be derived from them,
were used to produce plots with the aid of a computer. Through the combination of the
theoretical characteristic quantities, the diagrams obtained make it possible to predict the
space group and structure type of as yet undiscovered or unmeasured binary compounds, and
to estimate the size of the lattice constants in a simple way. Measured data from 1364
substances were used for verification.

1 Introduction

The present paper is the first of a number of publications which are designed to
demonstrate how, even if only medium-capacity computers are used, a pseudopotential
theory allows the practical prediction of physical properties of intermetallic
compounds and alloys: melting temperature, space group of the crystal, lattice
constants, etc. Empirical pseudopotentials have been used for a long time. Their
parameters can be varied such that it is possible to calculate with reasonable accuracy
the reflectivity and absorption spectra, band structures, or the distribution of the
electronic charge density. One frequently used empirical pseudopotential is that
introduced by Ashcroft (1966). The decisive implicit assumption of this potential is
that the volume integral of the sum of the attractive Coulomb force and the repulsive
Pauli force from the origin to the empty-core radius vanishes in the core region.

A combination of the Ashcroft pseudopotential theory and the muffin-tin orbital
theory was used, for example by Walzer (1987a, 1987b), for numerically calculating
for d-state metals the relative volume as a function of the static pressure or of the
Hugoniot pressure, and for comparing it with experimental data. It was also possible
to predict the bulk modulus and the initial pressure derivative of the bulk modulus. It
is the principal advantage of the pseudopotential calculations that, in contrast to all-
electron calculations, one does not have to take into consideraticn atomic core states,
but can make do with the contribution of the electrons of the incomplete shells.

As is well known, the self-consistency of pseudopotentials is achieved as follows.
The mathematical form of the pseudopotential and naturally also tHe number of
parameters to be varied are specified, and initial parameters are chosen. Instead of
the true potential, the first trial pseudopotential is substituted in the Schrédinger
equation, which then is solved numerically. The pseudocharge density is obtained
from the pseudo wave functions. First, the pseudocharge density is substituted in a
Poisson equation, the solution of which then yields a Hartree potential. Second, the
exchange and correlation term of the potential is calculated from the pseudocharge
density. With model parameters being taken into account, a summation yields the
total potential, which in turn is substituted in the Schrédinger equation, and so forth.
In this way, it is possible, for example, to reasonably well approximate a modulated
reflectivity spectrum by means of a ‘theoretical’ curve. The pseudopotential
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parameters gained through fitting represent a practically usable data reduction, eg for
the modulated reflectivity spectrum measured. The pseudopotentials thus obtained do
not have a good transferability; that is, in another chemical environment they often
lead to poor prediction.

A significant step forward was the introduction of first-principle pseudopotentials
(Topiol et al 1977; Zunger and Cohen 1978) which were derived from the density
functional formalism (Hohenberg and Kohn 1964; Kohn and Sham 1965). From
them, the total energy of solids as well as structural properties can be predicted (Ihm
et al 1979). On account of the well-known pseudopotential nonuniqueness, it is
necessary to make a few qualifying conditions for the ab initio pseudopotentials.
A number of authors impose a maximum wave-function similarity, while others use a
soft-core pseudopotential, V{)(r), with lim,_, ¥{(r) = constant. This gives only an
insufficient representation of those parts of the wave functions that are important for
the chemical bond. The present work continues the line of development which was
put forward by Hamann et al (1979). The potentials are angular momentum
dependent.

The conditions made are as follows. A core radius is positioned between the outer
maximum and the first zero of the all-electron wave function. Qutside the core radius,
the pseudo wave function and the all-electron wave function are in agreement with
one another. Since this is the chemically relevant valence region, the chemical bond is
thereby optimally described. A second condition concerns the agreement between the
all-electron and the pseudo valence eigenvalues for a prototype atomic configuration.
To ensure an optimum transferability, two further requirements are made: for radii »
greater than the core radius, the integrals from 0 to r of the real and pseudo charge
densities are in agreement, moreover, for radii greater than the core radius, the
logarithmic derivatives of the real and of the pseudo wave function are identical. This
also applies to their first energy derivatives.

In atoms with mean and high atomic numbers, the valence electrons are affected by
relativistic effects. Therefore, Kleinman (1980) extended the concept of Hamann et al
(1979) and proved that a pseudopotential for the wave function of each relativistic
one-electron state can be derived for the valence electrons. These pseudopotentials
satisfy the aforementioned conditions and show good transferability. In this work, the
theories developed by Schliiter (1978), Hamann et al (1979), Bachelet and Schliiter
(1982), Bachelet et al (1982), and Greenside and Schliiter (1983) are derived in a
condensed form and, based on them, new characteristic quantities are computed.
Using these characteristic quantities one is able to predict, for 1:1 binary intermetallic
compounds and alloys, a multitude of experimental quantities and to derive systematic
relations which also allow predictions to be made for mixtures that have not yet been
produced.

2 Formalism

The pseudopotentials used here were derived from full-core atom calculations. For the
heavier atoms, relativistic effects play a role. Therefore, the Dirac equation serves as a
starting point. It is a linear matrix equation with first-order partial derivatives. The field
function contains four components. For the case of a central potential, V(r), the matrix
equation is reduced to two coupled scalar equations. F; and G, represent the radial part
of the minor and major components of the Dirac wave functions. Therefrom, the charge
density, p, is computed by summing over the occupied states, i:

p(r) = Y _IEM + 1G] m

i
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In place of the Schrodinger equation, the aforementioned two equations hold for
the relativistic case:

dF;
B0 _2hr) 4 e VlaGilr) =0, @
dGi(r) n 2)
10260 - [Zr+ - 700 eFi =0, ®
where n is the relativistic quantum number [n = [ for j = /—}, and n = —(I+1) for

j = [+}], [ is the angular momentum quantum number, ¢; is an eigenvalue, and « is
defined by equation (4). Here, atomic units are used and, thus,

c=a1=137037 and fh=m=e=1, )

where ¢ is the speed of light in vacuum, # is the Planck constant, m is the electron rest
mass, and e is the electronic charge. The two different j values express that the orbital
angular momentum and the spin are coupled for each electron. This then results in the
splitting of the pseudopotentials. This splitting becomes visible, in particular, with the
heavier atoms. The following expression is obtained for the ground-state energy:

1 r)p(r' Z
Ep) = T(o) + 3”%& ar' = [F o) ar+ [ peceo) o 5)
The first term on the right-hand side is the kinetic energy of the electrons, the second
term is the electrostatic energy of the electrons, and —Z/r is the potential of the nuclei.
&xc 15 the exchange-correlation energy per electron. After Ceperley and Alder (1980),

b e 0.4582 ©)
s
is used for the exchange energy per electron, and
=- 0'11?32 for r>1, @)
(1 4 1.052975'“ + 0.3334r,)
and
ge = —0.0480 + 0.03111nrs — 0.011675 + 0.0020r51nrs for rs<1 (8)
for the correlation energy per electron, with
1 4
L= ©)

With the help of these interpolation formulas, the exchange-correlation energy can
be determined from the electron density. To allow for relativistic corrections, the
exchange energy ¢, per electron has to be multiplied by a factor f; where

1/2 21721 2
o 3[0a) g+ e 2 -
2 g P
with 4 = 0.0140/r,.
The exchange-correlation potential is
_d _ rs dexe
pxe(r) = @[Pexc(ﬁ')] = Exe 3dr, (11)

On the other hand, the potential u, has to be multiplied by f,, where

__1 3m+(1+m" ;
fe==3t3 paam 02
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Norm-conserving pseudopotentials with optimum transferability have been used
here. They result from the solution of a Schrddinger-type equation:

1 [de,, n(n+1)

ArT e TG" - [V(r) — €]G, = 0. (13)
Except for higher-order quantities, this equation corresponds to the Dirac equations.
The first result obtained is the radial wave function G,, the next one F,, and then a set
of one-electron eigenvalues. By multiplication with a cut-off function 1—f, where
f@rjrey) = exp[—(rfr. )*3], the singularity in the proximity of r ~ 0 is avoided, and a
first step pseudopotential is achieved. As next steps, one has normalisation and the
transition to screened pseudopotentials, producing the nodeless eigenfunctions. A last
step in the calculation serves to linearise the exchange-correlation energy as a function
of p.

The pseudopotentials defined in this way now form the starting point for the
computer programs developed for this work. No matter whether one uses the initial
quantities oy, as, a3, Ci, Cz, C3, C4, Cs, Cg from Bachelet et al (1982) or calculates
them anew, the following computing scheme suggests itself. At first, one calculates
the 21 elements of the symmetrical overlap matrix, S;. The following integral serves
several purposes:

m
Sitm = -[ r+% exp(—(cu + au)r¥]dr. (14)
0
A special case is the error integral
fm=—28 L
erim = m ilm, ( )
with K = —2, o; = 0, and o; = 1. If, however, we have a; = ;43 (i = 1, 2, 3) and

ar = oges (I = 1, 2, 3) and if, moreover, the following three relationships [(17), (18),
(19)] apply, then the overlap matrix has to be calculated from

Sy = lim Sim, (16)
where, of course, Sy = Si.

k=0 if i€ {1,2,3} and /€ {1,2,3}; (17

k=4 if i€ {4,56} and /€ {4,5,6}; (18)

k=2 if ie{1,2,3} and /€ {4,5,6}, or ic {4,56} and /€ {1,2,3}. (19)

The orthogonality matrix, Qy, is calculated by means of the following equations (20)
from the overlap matrix:

011 = (S1)"% Q12 = S12/Qu1s Q13 = S13/C11,

014 = S14/Qn1, Q15 = S15/Q11, Q16 = S16/C11;

02 = (S22— 0%, Q23 = (S23—012013)/Q2,

Q24 = (S24—012014)/Q22, Q25 = (S25—012015)/ 022,
026 = (S26—012016)/Q22, Q33 = (S13— 01— 039",
034 = (S3a— 013014 — 023024)/Q33,

Q3s = (S35— 013015 — 023025)/Q33,

Q36 = (S36— Q13016 — 023026)/ 033,

Qas = (Saa—0%4— 03— 030)'2,
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equations (20) continued

Qas = (Sas— 014015 — 024025 — 034035)/ Qaa,

Qa6 = (Sas— 214016 — 024026 — 0340136)/ Qaas

Oss = (Sss—Q0Fs— 035 — 03s— 03s)'%,

Qs = (Ss6— Q15016 — 025026 — Q35036 — Q45Q46)/ D55,
Qss = (Se6— Qts— Q36— Q36— Qs — 036)'%,

Oy =0 fori > L (20)
The average pseudopotential is
Vi = Veare(r) + AVPR(r). (1)
The short-range /-dependent part of this pseudopotential is
AVion() = 231:(/1;- + r*A143) exp(—a; %), (22)
i=
where the coefficients A4; are calculated as follows from Cy, ..., Cs and Qy:
As = —Cs/Qes; (23a)
As = —(Cs+ Qsede)/Qss, (23b)
Ay = —(Cy+ QusAs+ QusAe)/Qas (23c)
Az = —(C3+ Q3444+ Q3545+ Q3646)[Q2, (23d)
Az = —(Cot+ Qa3ds+ Q244+ Qa5sAs+ 0Qr646)[ a2, (23e)
Ay = —(C1+ Q12dx+ Q1343+ Qrada+ Q1545+ 01646)/ Q11 (23f)

The equations given above have to be individually calculated for each chemical
element and for each angular momentum quantum number /.
2
Peorsr) = = 223 o™ exf(0f) 4, (24)
j=1
where Z, is the valence charge.

Now, based on the pseudopotential 7i°® that can be calculated in this manner, one
can pursue two lines of thought which are of importance for the question of the
chemical composition of the Earth’s outer and inner cores. First, using an approach
that is similar to that adopted by Ihm et al (1979), one can calculate from it the total
energy for one substance. From the total energy it is possible—in a manner similar to
Walzer (1987a, 1987b)—to determine the equation of state, the bulk modulus, and
other variables; and to compare them with experimental values from physical
laboratories. When a physically verifiable model has been established, it can be
applied to geochemical hypotheses for the chemical composition of the outer core of
the earth, and one can examine whether the computed distributions of the mass
density and of the seismic velocities conform, within the error limits, with the
geophysically measured distributions. When doing so, one would make an implicit
assumption that is common in geophysics, but which is not precisely true: that under
pressure, the phase diagram of binary mixtures should be compressed or extended only
in the temperature direction, but not significantly altered (eg through the appearance
or disappearance of certain phases).

Second, one may attempt to determine characteristic quantities from the potentials
in order to find the systematics of binary intermetallic compounds and alloys.
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In contrast to compounds, one can continually change the mixture ratios in the case
of alloys. For reasons of simplicity, this paper is confined to binary 1:1 mixtures.
However, the method used is by no means limited to this ratio. The determination of
systematic distributions has the advantage that properties can be predicted for
material mixtures of this kind that have not yet been produced. If, for practical
reasons, certain properties are desirable, one could confine oneself to the production
of those compounds which have a theoretically favourable location in the present
plots. In the present paper, I wish to pursue the second line, which may also make a
certain contribution to the determination of the chemical composition of the Earth’s
core.

The influence of the spin —orbit effects on the pseudopotential is described by

PR0) = |37 7% - P23 (25)

The average pseudopotential introduced through equation (21) can be expressed as
follows by means of the different j degeneracies of the / + 1 states:

.y 1 i .
Pionr) = [Tﬁ] U708 5 + (14 1) PR ). (26)
From this expression, there follow equations (27) and (28):
P80 = 7o) - LD ), @)
~ ~. [~
280 = PI20) +5 7P 0). (8)

Now, one calculates the bare-ion pseudopotentials 17};“1/2 as a function of the
distance, r, from the centre of the atom. These curves show minima and locations of
maximum curvature. For these special radii or for physically useful functions of the
same, one may form, for instance, structure maps for a given stoichiometry, eg AB,
and check whether systematic distributions develop. As far as this was possible, the
following variables were determined for the elements hydrogen to plutonium:

’mos Umo0s €mos; Fmil> Umi1s €mi1: Tp1s Upls €pls
’m2s Um2s €m2; Fp2s Up2s €p2; Fm3, Um3s €m3. 29

The number triples are separated by semicolons. r and v are, respectively, the radius
and the pseudopotential of the characteristic point. e is the genuineness. If e = 1,
the pertaining r and v denote, respectively, the radius and potential of the first
minimum which is reached coming from infinite »; both are expressed in atomic units.
If this minimum is situated at the origin of », we assume that e = 0; and the number
pair (r, v) is substituted by the location with the greatest curvature of the curve.
Subscript m means minus and relates to the pseudopotential of equation (27);
subscript p means plus and related to equation (28). The indices 0—3 denote the
angular momentum quantum number / used in (27) and (28). In more precise terms,
e = 0 means that v is at its minimum for » = 0. The listed number pair (r, v) then
designates the location of the curve where at the same time we have d%/dr> > 0, and
curvature k coming from the infinitely large r reaches a maximum, with

d% dv e
k=@[1+<5)] . (30)

To define further characteristic quantities from the pseudopotentials calculated, an
additional index is attached to the quantities listed in (29). This index denotes the
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atomic species, and can be 1 or 2 in the case of a binary mixture, Thus, for example,
rp12 is the radius of the minimum (or, in the special case, point of maximum
curvature) in atomic units according to formula (28) for / = 1 and for the second
atomic species in a binary 1:1 mixture. A kind of size difference may be defined as

RE? = [(r11+ rmo1) = (r12 + Fmo2), (31)
where

r1 = §(rmutrpn)  and ryp = 10mi2 7o) (32)
Moreover, RS is defined as

R = Iriu—raoil + Iri2—rmoal, (33)

and is a function of hybridisation.

3 Numerical results

The author has developed new computer programs on the basis of the theory outlined
above. In figures la—1le, a few pseudopotentials have been plotted as examples for
the elements from hydrogen to plutonium. They have been calculated according to
equations (27) and (28). For boron, the relativistic effect is not yet visible. For
sulphur, one finds a bifurcation in the curve for / = 1; this bifurcation can be
represented only as a thickening of lines. With niobium and indium, two curves are
already well visible for / = 1 and / = 2; whereas for mercury—the heaviest of the
elements represented here—the distance between f}}"_"m (left-hand) and ?i‘i“m (right-
hand) is already quite large. It should be noted here that—for the purpose of
illustrating the quantities listed in (29)—in figure la (boron), for example, the points
(*m0s Ymo)s (*m1> Um1), and (rma, Um2) have been represented by the intersections of the
short strokes in the proximity of the numbers / = 0, 1, and 2.

Figures 2—10, too, have been plotted by means of the computer. The symbols are
defined in table 1. The theoretical values have all been obtained with the help of the
theory considered in section 2. The quantities observed have all been taken from the
encyclopaedia of Villars and Calvert (1985). Values were neither added nor omitted
so that the results given are objective. Figure 2 shows that, in a R®™ versus R(™) plot
for all known 1:1 mixtures, the three most frequent crystal lattices do not show a
random distribution. On the contrary, fields can be separated from one another in
which one type of lattice is prevailing. In figure 3, it is shown in the plot for the radii
and pseudopotentials related to / = 2 that the compounds and alloys consisting only
of transition metals (TT) aggregate in a small area of the left-hand centre of the plot;

Table 1. The assignment of symbols for the plots in which the symbols express the space
group of the crystal lattice.

Space Structure Symbol Space Structure Symbol
group type group type
Fm3m CINa ] Pnma BFe v
Fm3m Cu O Pnma MnP A
F43m SZn ()] P4/mmm AuCu <
Fd3m NaTl A P4/nmm CuTi >
Pm3m CICs L 2 P43n GeK <
P6;3/mmc AsNi @ P2,3 FeSi >
P63/mmc Mg e} Cmcm BCr +
P6iymc SZn v Im3m w X
I4,/acd NaPb ¥
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the remaining ones are situated on a few lines for still smaller mean radii. The
compounds and alloys consisting only of simple metals (SS) prevail in the zone with
small negative potentials and large radii. In the middle, one finds only compounds
consisting of simple metals and transition metals (ST). In the upper centre, ST and SS
intermingle. Figure 4 shows a similar distribution of points as figure 3, but radii and
pseudopotentials apply to / = 0. The first thing that is noticed is that the characteristic
shows less scattering. The symbols of figure 4 represent the crystal lattices. Weakly
curved curves of identical lattice symbols prevail. Owing to the density of the point
cloud, this is noticeable here only at the edges of the cloud, but it is also applicable to
its interior. In figure 5, the lattice symbols are plotted only for TT in a radius—
pseudopotential diagram. Radii and potentials relate to / = 0.
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Figure 1. Pseudopotentials for (a) boron, (b) sulphur, (c) niobium, (d) indium, and
(¢) mercury, according to equations (27) and (28). The distance r, from the centre of the atom
is plotted downwards, and the pseudopotential, v, is plotted towards the right; both are in
atomic units. The angular momentum quantum number, /, according to equation (27) is
written on the curves. The minima or points of maximum curvature (for more details, see
text) are marked by short strokes on the curves. They have also been calculated by means of
the computer program.
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It can be seen that on some lines and in some areas, the symbols of only one lattice
type are present or prevailing. This enables one, in conjunction with figure 2 and other
plots, to use the theoretical quantities (29) to predict the behaviour of the crystal lattice
of compounds and alloys that have not yet been produced. Figure 6 shows that
predictions for lattice constants a are also possible. Furthermore, the point distribution is
characterised by four clearly separated branches. In this radius—potential diagram for
I = 1, only ST with space group Fm3m and structure type CINa are shown. Figure 7
contains a radius—pseudopotential diagram for / = 1. Certain magnitude classes of the
lattice constants a are linked here to certain lines and areas in the plot. In this diagram,
only ST with lattices that correspond to the space group Pm3m and structure type CICs
are plotted. Two clearly separated substance classes can be seen in figure 8. Obviously,
lattice constant a is more dependent on 7y, than on ry. Figure 9 shows the distribution
of TT, SS, and ST in the rmo—rmy plot. Here too, interesting regularities can be
observed. Finally, figure 10 shows a clear division into areas of identical lattice types.
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Figure 5. Radius—potential plot for / = 0. The symbols denote the space group of the
crystal lattice; see table 1. Only compounds and alloys of two transition metals are
represented.
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Figure 10. Potentjal—lattice constant plot. The symbols are explained in table 1 and denote
the space group and structure type of the crystals.

4 Conclusions

Based on an extended pseudopotential theory, a new computer program for the
calculation of /-dependent pseudopotential values as a function of the distance from the
atomic centre has been developed. The program permits one to determine certain
extreme values and points of maximum curvature. Radius —potential plots and
radius —radius plots show a systematic distribution of space groups and of the structure
types of binary 1:1 compounds and alloys; and the systematic relations of the lattice
constants a, b, and ¢. This enables us to make predictions for metal compounds and
alloys which have not yet been produced so far. This work is a prerequisite for the
understanding of a future paper which concerns predictions of the melting temperature of
the substances considered here.
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