U. Walzer. Systematics of binary intermetallic phases. Phys. Status Solidi (b), 168:397-412, 1991.

Draft

Systematics of the Binary Intermetallic Phases

By
U. WALZER

First, a survey is given of semiempirical approaches designed for predicting physical and chemical
properties of binary alloy systems from the properties of the elements. The same goal is pursued with
the help of a pseudopotential theory with optimum transferability derived from relativistic quantum
mechanics. The curves of the I-dependent bare-ion pseudopotentials are computed, the spin—orbit
coupling being taken into account, and a characteristic radius and a characteristic energy are determined
for each of these curves. These dual coordinates are used for the preparation of structure maps in
order to predict for binary (1:1) alloys and compounds with a fair degree of probability: space group
and structure type of the crystals under normal temperature and pressure conditions, lattice constants,
melting temperature, etc. A particularly successful approach is to compute from the dual coordinates
a kind of size difference and a function of the hybridization, which then in turn are used as new dual
coordinates.

Zuerst wird ein Uberblick iiber die semiempirischen Verfahren gegeben, die fiir die Vorhersage der
physikalischen und chemischen Eigenschaften bindrer Legierungen aus den Eigenschaften der
Elemente entwickelt wurden. Dassclbe Ziel soll mit Hilfe einer Pseudopotentialtheorie mit optimaler
Ubertragbarkeit, die aus der relativistischen Quantenmechanik abgeleitet wurde, erreicht werden. Die
Verliufe der l-abhingigen lonenpseudopotentiale werden unter Berlicksichtigung der Spin-Bahn-
Kopplung berechnet und ein charakteristischer Radius sowie eine charakteristische Energie fir jede
dieser Kurven bestimmt. Diese dualen Koordinaten werden fir die Erstellung einer Strukturkarte
benutzt, um mit betrichtlicher Wahrscheinlichkeit far bindre (1:1)-Legierungen und -verbindungen
dic Raumgruppe und den Strukturtyp der Kristalle unter normalen Temperatur- und Druck-
bedingungen, die Gitterkonstanten, Schmelztemperaturen usw. vorherzusagen. Besonders erfolgreich
ist es, aus den dualen Koordinaten cine Art GroBendifferenz und eine Funktion der Hybridisie-
rung zu herechnen, die dann als neue duale Koordinaten benutzt werden konnen.

1. Introduction: Empirical and Semiempirical Methods

It is evident that for practical reasons it is highly desirable to predict from well-known
physical properties of the atomic components, the stable crystal structure, the melting
temperature, the lattice constants, and other quantities of intermetallic compounds and
alloys. On this topic, a survey will be given in the beginning, and then a theoretical proposal
will be put forward. Finally, the usefulness of this proposal will be demonstrated by means
of illustrations.

In most cases, the afore-mentioned objectives have been implemented through structure
maps or similar diagrams. That is, the attempt was made to find two coordinates leading
to a more or less pronounced regionalization of the third property in the plot. Kubaschewski
[1], for example, used the atomic radius ratio and the cohesive energy ratio for achieving
a separation according to the crystal structure. A further attempt in this direction is the
heat-of-formation model developed by Miedema [2]. This model makes use of the chemical
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potential for the electronic charge, #*, and an empirical quantity, nys, which later turned
out to be the electron density at the boundary of the Wigner-Seitz cell. It is successfully
used to the present day as an empirical model [3] although it does not directly employ the
contributions of the d-electrons to the chemical bonds. In contrast to this, Pettifor's
approximation [4] makes direct use of the change in the d-band width and of the
centre-of-gravity shift due to alloying.

The use of pseudopotentials for these purposes constituted a significant progress. At first,
Simons [35, 6] proposed a simple hard-core form consisting of a Coulomb attraction term
describing the attraction between the electron and the ion core and of a quantum defect
term. 5t. John and Bloch [7], proceeding from this approach, introduced as characteristic
quantity a radius which is the balance point between the attractive Coulomb force and the
repulsive Pauli forces. Since the pseudopotential of a one-valence-electron ion used had
been fitted to atomic spectral data, the radii are not physical in a certain sense, but they
are nevertheless well suited for preparing the afore-said plots: From differences and sums
of these s- and p-radii, an electronegativity difference and an average hybridization were
calculated and plotted for 59 octet binary compounds. A separation according to structure
types was obtained. Chelikowsky and Phillips [8] extended the table of the afore-mentioned
radii to halogens and group-1B metals. Here, too, the bond-orbital o and r dual coordinates
were successfully used for the description of the physical properties, This description was
performed for octet binary compounds and suboctet binary compounds with 2 £ P £ 6
in separate plots. We shall also partly make use in the present paper of the dual coordinates
r, and r,, however, with a completely different calculation of the pseudopotentials. These
quantities are calculated from [-dependent ion-core radii #5 and ry, with « denoting the
atomic species, In the case of a binary compound AB, « thus can be A or B,

=t (1)
describes s—p o hybrids, while

re=lry - ril (2)
corresponds to p*~sp hybrids. The quantity
- rt (3)

=1

is a measure of the total effective core radius difference, whereas

re=rp oty (4)

indicates the sum of the orbital nonlocality and can be partially considered as a measure
of the degree of metallization.

2. First-Principles Approaches

The methods for the systematization of structural properties outlined above can be
considerably sophisticated using calculations from first principles directly tackling the
all-electron problem. The amount of computation involved is often unreasonably high.
Bearing in mind that many low-energy perturbations hardly depend on the almost spherically
symmetrical closed-shell core states, the idea is suggested to deal only with the valence
states. In this case, the external potential is substituted with a first-principles pseudopotential.
Attempts to compensate for the unjustified lowering of the energy of the valence states and
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other drawbacks have led to a number of different definitions. For the practical applications
intended by us there exist two principal lines of development which are both based on an
all-electron single-particle equation for a polyatomic system and the density-functional
formalism. In neither approach, fitting of the energy eigenvalues to the experiment is
performed. The first principal line obviously was beginning with Zunger and Cohen [9] as
well as with Zunger [10]. Tt is characteristic of this line that the pseudopotential has to
satisfy the following conditions: The pseudo-wave functions should be contained in the
same core-plus-valence orbital space defined by the spin-density-functional formalism. The
pseudo-orbital energies should be equal to the true valence orbital energies. Maximum
wave-function similarity within the afore-said orbital subspace is demanded. The Zunger
pseudopotential contains the following terms: a non-classical, strongly repulsive, Pauli
potential replacing the core—valence orthogonality; an attractive core—valence Coulomb
potential; the screened potential generated by the core charge density; a term for the
non-linearity of the exchange potential; a term for the non-linearity of the correlation
potential; the orthogonality hole potential, and, finally, exchange-correlation potentials
generated by the orthogonality hole charge density. Alter passing from the bare pseudo-
potential to the ground-state screened atomic pseudopotential, the characteristic radii, one
for every angular momentum quantum number [, are determined as the crossing points at
which the screened pseudopotential vanishes. These Zunger radii have been employed a
number of times in metal chemistry. Villars [11], for example, endeavoured to predict whether
or not binary mixtures of elements tend to form a compound. In the second case, he tried
to determine whether they are of the solubility type, insolubility type, eutectic type, or
peritectic type. To this end, he formed three-dimensional diagrams, one for pairs of elements
with the same crystal structure and one for pairs of elements with a different crystal structure.
The first dimension of each diagram was a magnitude analogous to (3) but had been com-
puted from Zunger's pseudopotential radii. On the second coordinate, the ratio of the melting
temperatures of the two elements was plotted in K, with the greater number being given in the
numerator, The third coordinate constituted the difference between the number of valence
electrons. Villars succeeded in obtaining a good separation of the different types. In [12], this
attempt was transferred to ternary alloy systems, the listed magnitudes of the element pairs
being substituted with the arithmetic mean of these magnitudes of three element pairs each.

Andreoni et al. [13, 14] examined the equilibrium shapes of sp-bonded nonhydride AB,
molecules. They were particularly interested in determining whether the molecule is linear
or bent and in the size of the apex angle. The Zunger size difference r, and the dual Zunger
quantity »_, which is a function of the hybridization, on the one hand, and a nodal radius
scheme [15], on the other hand, were used for preparing the structural plots. This classification
was also applied to AB, and A,B, compounds [16].

Using structural plots, we want to predict in this paper quantities other than the
afore-mentioned ones. Moreover, our approach is based on the other principal line of
development for first-principles pseudopotentials which started with Hamann et al, [17] and
was continued by Bachelet et al. [18, 19] and by Greenside and Schliiter [20]. We developed
the theory further and wrote completely new computer programs.

3. Theory

Since heavier atoms are affected by spin—orbit effects, we use the Dirac equation as starting
point. In the case of a central potential V(r), this linear matrix equation with partial
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first-order derivatives is reduced to the following two coupled differential equations:

dgG; x

4Gt + GAr) = [227% + ¢, = V(] aFir) =0, (5)
dr ¥

dF; .

aFi) _ = Fir) + [ — V(r] aGi(r) = 0. (6)
dr ¥

The electronic charge density is obtained through the summation over the occupied states i,
x
o) = X [IF’ + [G7]. ()

i=1
We use exclusively atomic units, thus,
h=m=¢=1 and ¢=a"'=137037.

The relativistic quantum number » is obtained from the angular momentum quantum
number [,

x=—{I+1) for j=1+1/2 and %=1 for j=1-1/2.

Neglecting higher-order terms, the following differential equation for the determination of
the major wave-function component G (r) [ollows from (5) and (6):

1 (d*G, x(x + 1
( . _AlE D)o

2\ dr? r?
From this equation, thus, the pseudo-wave functions and pseudopotentials are derived, the
following fundamental requirements having been satisfied:

a) Outside the core radius # true and pseudo atomic wave functions are in agreement.

b) For a certain atomic configuration, the real and pseudo valence eigenvalues are identical.

c) For each valence state, the integrals from 0 to r of the real and pseudo charge densities
are in agreement if r > r.. As a result, the electrostatic potential outside the core radius is
in conformity for real and pseudo electronic charge distributions.

d) For r > r,, the logarithmic derivatives of the true and pseudo wave functions are in
conformity. This is also true for the first energy derivatives.

This last condition effects that the scattering properties of the real ion cores are fairly
well described. Transferability is achieved through the last mwe conditions, ie. the
pseudopotentials can be used for both atoms and molecules, clusters, solids, and surfaces.
The ground state energy of the electrons was computed by means of the local-density-
functional approach [21] and is made up of the following constituent parts: kinetic energy
of the non-interacting electrons, Coulomb energy of the electrons, nuclear potential, and
exchange-correlation energy. Interpolation formulas [22, 23] were required only for the last
term. With respect to these formulas, too, relativistic quantum-electrodynamical corrections
were applied. All these expressions can be computed from the charge density.

The bare-ion pseudopotentials were computed in five stages:

a) G, was computed from (8). It yielded F, and a set of one-electron eigenvalues.

b) In the screened full-core potential, the singularity is cut off at » = 0.

¢} This is followed by a normalization.

d) Inverting the radial Schrodinger-type equation yields the final screened pseudo
polentials.

e) Eventually, these final screened pseudopotentials are unscreened.

n)—(V(F}—U)G,‘zﬂ, (8)
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Fig. 1. Pseudopotential for a) Mg, b) Zr, and ¢) Pt. The distance from the centre of the atom has been
plotted downwards, and the ion-core pseudopotential towards the right, both in at. units. The angular
mormentum guantum number [1s given on the pertaining curve. Minima or maximum curvature locations
(for more details, see text) have been designated by short dashes at the curves
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A detailed description of the computations will be published elsewhere [24]. Fig. 1a to ¢
show some of the computed pseudopotentials as a function of the distance r from the centre
of the atom. The numbers on the curves denote the pertaining angular momentum quantum
numbers [. The curves are split through spin-orbit effects. However, this becomes visible
only for the heavier elements of which zirconium and platinum were shown by us as
examples. For each curve, one characteristic point was determined with the help of the
following procedure: For the case that the pseudopotential v has its smallest value in the
centre of the atom, we take the genuineness e to be zero. Otherwise, ¢ = 1. For ¢ = 0, the
characteristic number pair r, v is located at the point of the curve where d?u/dr? = 0 and
where the curvature k, coming from the infinitely large distance r, reaches a maximum for
the first time. We have

d*v doy¥]7 3
k = e [1 + (dr) ] . {9)

For ¢ = 1, the characteristic number pair r, v represents the first minimum of the curve,
coming from the side of infinite distance r. In this way, the following quantities were
determined for the chemical elements:

Firr Venon €mo: Tmis Pmis €mis Jvpl.'- L—pl' epl;
Pz Cnze €m2d Fpzs Upze €527 Timas Umas €ma - (10

Each of these number triples separated by a semicolon represents a characteristic point:
distance from the centre of the atom, pseudopotential, and genuineness. The first index, Le.,
m or p, denotes the spin state. The second index is the angular momentum quantum number.
In the deseription given in the following section, a further index which is a label for the
atom type has been attached. Thus, in a binary mixture, it may be 1 or 2.

4. Graphic Representation of the Results

All theoretical numerical values represented in the plots have been computed by means of
the theory outlined above; all experimental data come from the handbook by Villars and
Calvert [25]. To exclude any subjective aspects from the discussion, no values were eliminated.
All characteristic radii have a systematic distribution in the Periodic Table. A kind of s-state
radius, namely r,,, 15 shown as an example in Fig 2. In analogy to (3) and (4) and using

{10), we now define the size difference R and a function of the hybridization R[™,

' (1

R = 1lryy + rgor) — (Fiz + Pzl
where ry; = (rpy, + rppd/2and ry; = (rppz + rup2)/2. and
R = 1ryy — Foorl + 1r12 — Tooal - (12)

Fig. 3 shows R™ versus R!™. The symbols denote the space group and structure type of
the crystal (see Table 1). A distinct separation of the three depicted lattices can be noted:
Solid diamonds represent lattices with the space group Pm3m and structure type CICs,
solid squares the space group Fm3m and structure type CINa, open diamonds the space
group P6;/mme and structure type Mg. This means that, if a compound or alloy with a
certain lattice from the three is to be produced, quite good predictions can be made. or o
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Table 1

Symbol assignment in the diagrams in which the symbols designate the space group of the
crystal lattice

space structure symbol description of symbol
group type

Fmim ClNa n solid square

Fm3m Cu O open square

Fiim SZn O open circle

Fd3m NaTl A right angle,

tip pointing upwards

Pmim CICs * solid diamond
P6;/mme AsNi ® solid circle
P6;/mme Mg < open diamond
P6yme §Zn v right angle.

tip pointing downwards
Pnma BFe v solid triangle.

tip pointing downwards
Pnma MnP A solid triangle,

tip pointing upwards
P4/mmm AuCu - solid triangle,

tip pointing to the left
P4/nmm CuTi » solid triangle,

tip pointing to the right
Pdin GeK < right angle,

tip pointing to the left
P23 FeSi > right angle,

tip pointing to the right
Cmem BCr + upright cross
Im3m W x canted cross
14, /acd NaPb * canted cross with additional

horizontal beam

lot of experimental work is superfluous since the coordinates can simply be computed by
means of the psendopotential theory.

R!™ is, to a certain extent, a measure of the sum of the orbital nonlocality of the s and
p electrons. R is, however, the difference of the sums of the core radii for [ = 0 and 1,
which have been computed by means of the bare-ion pseudopotentials. A rough interpreta-
tion of the coordinates used in Fig. 3 is as follows: R!™ corresponds to p?—sp hybrids,
however, R™ corresponds to s—-p o hybrids. We did not use the discrimination between
octet compounds and nonoctet compounds because the assignment of a compound is
sometimes arbitrary. If we drop the doubtful cases and use the octet—nonoctet discrimination,
then the topological separation will be even more distinet. If we construct a similar plot
by means of Miedema parameters [2, 3], then we receive no separation. In the Miedema
diagram, the difference of the third roots of the electronic density at the Wigner-Seitz cell
boundary is plotted towards the right, the difference in the effective elemental work functions
1s plotted on the ordinate.

In Fig. 4, an averaged pseudopotential has been plotted versus an averaged radius for
[ = 1. Only materials with space group Fm3m and structure type CINa were taken.
Moreover, we have confined ourselves to compounds and alloys of a transition metal

and a simple metal. The symbols depnote intervals of the lattice constant & (in 107 *%m)
with
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the crystals (see Table 1)

solid diamonds a = 6.3665,
solid squares 63665 = a = 58517,
open diamonds 58517 = a = 53369,
open squares 53369 > g = 4.8221.

Not just the regular pattern is of interest, but also the fact that, using this diagram, one
can predict the size class of the lattice constant a. In Fig. 5, the lattice constant ¢ has been
plotted versus an averaged radius for | = 0. The symbols denote the different lattices. Here,
too, the lattice types are by no means randomly distributed. but in certain parts of the plot
points of the same lattice accumulate.

If the lattice constant ¢ is plotted versus the averaged pseudopotential for { = (0 (see
Fig. 6), the separation according to space group and structure type is even more pronounced
than in the previous diagram. We define a function F as follows:

F=MC—-D/(8 = IN(rme — 1) to ,

where C is the number of the column in the Periodic Table containing the element. For
AB compounds and alloys of two transition metals, the melting temperature T, increases
with the mean value of F. The quantities r, and v, are given in atomic units, In Fig. 7,
F has been plotted versus the melting temperature. Solid diamands represent the compounds
and alloys of two transition metals (TT), crosses those of two simple metals (S$), and open
diamonds represent the compounds and alloys of a transition metal and a simple metal
(ST). In particular for high temperatures we can see a distinct separation of the three point
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clusters. The separation into three point clouds and the linear F increase of the TT points
versus the temperature of fusion T, mean a progress in predictability. Efforts to predict
the melting temperature by means of the atomic radii, atomic numbers, clectronegativity,
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and number of valence electrons have been only of limited success. Only the use of the
elemental melting points results in similar elongated point clouds of the TT points [26] and
of the ST points. The predictability by means of the SS point cloud is low.
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In Fig. 8, the mean value of the radii for [ = 2 has been plotted versus the mean of the
radii for I = 0. Only binary (1:1) mixtures of the elements of the fourth, fifth, and sixth
periods without rare-earth elements were taken. The symbols represent intervals of the
melting temperature T, (in “C) with

solid diamonds T,, = 2028,
solid squares 2028 = T,

= 1487,
open diamonds 1487 = T, = 946,
open squares 946 = T, = 405,

Crosses 405 =1T,.

Not only the separation of the symbaols into four elongated clusters is noteworthy here, but
also the possibility to predict the melting point class. In Fig. 9, the mean value of the radii
of the characteristic points for | = 2 has been plotted versus the mean radii of the
characteristic points for [ = (. Only a slight dependence on the mean value of the d-state
radii is found for alloys and intermetallic compounds of two transition metals (TT) which
have been plotted here as solid diamonds. The plot in Fig. 10 shows the lattice constant a
versus the mean radii for / = 0. Only compounds and alloys of a simple metal and a
transition metal whose lattice corresponds to the space group Fm3m and structure type
CINa have been used. A radius—lattice constant diagram can be seen in Fig. 11. Only
compounds and alloys of two transition metals are plotted. Solid diamonds represent space
group Pm3m and structure type CICs, open diamonds P6,/mme and structure type Mg.
Also in this case the lattice types are distinctly separated into different areas. An advantage
of the present method of best separation is the uniform derivation of the two coordinates
used. Both characteristic pseudopotential and characteristic radius stem from a unified
approach which has been derived from quantum mechanics. Previous separation approaches
often use a mixture of experimental and theoretical quantities. For example, Villars [11]
received the best results using three coordinates: the difference between the numbers of
valence electrons, the absolute difference between the Zunger radius sums, and the ratio of
the melting temperatures of the two elements, the higher magnitude being the numerator.

Fig. 12 shows the mean value of the characteristic radii for | = | versus the average of
the radii for [ = 2. Solid diamonds represent TT, open diamonds ST, and crosses SS. Apart
from an area with mean radii, a distinct separation of the three point clusters can be noted.
The dependence of the melting temperature on the mean value of the d-state radii is given
in Fig. 13, while Fig. 14 shows a typical dependence of the potential {ordinate) on the radius,
in this case especially for [ = 0. Points of an identical lattice structure are located on special
curve sections or in small areas.

5. Conclusions

From a pseudopotential theory with optimum transferability, a potential curve has been
computed as a function of the radius for each chemical element, for each angular momentum
quantum number, and for each spin state. The information contained in these curves has
been somewhat condensed into a characteristic point. These dual coordinates and simple
functions of them served for the preparation of structure maps and similar diagrams which
do not just permit to predict the crystal structure, but also the melting temperature, lattice
constants, ete. Thus, if we want to create a binary alloy or an intermetallic compound with
a certain desired property, we can see [rom the diagrams prior to the experiment whether
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this attempt is promising. The characteristic bare-ion pseudopotential radii can be used
with good success in order to systematize the chemical and structural properties of binary
AB systems. They can be used to compute the major orbital contributions to binding energies.
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