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At first, a review is given on how structure maps for the prediction of the space group and structure
type of AB-type binary compounds can be designed with the help of semiempirical theories. Then, two
ab-initio pseudopotential theories are compared in detail. The all-electron single-particle equation and
the spin-density-functional formalism form the starting point for both theories. While transferability
is aimed at in both theories, the conditions imposed differ in some respects. Theory A uses the
Schrodinger equation as starting point. The crossing points of a screened pseudopotential are employed
as characteristic quantities. The structure energy is dominated by s-p electrons, even in the case of the
compounds of two transition metals. Theory B is based on the Dirac equations and takes into account
spin—orbit effects which are relevant for heavier elements. The coordinates of the minima of the bare-ion
potentials serve as characteristic radii and energies. In both cases, a good separation of the structure
types is achieved. For theory B, in addition, a few predictions concerning lattice constant a and the
melting temperature are represented graphically.

Zuniichst wird eine Ubersicht gegeben, wie man mit halbempirischen Theorien Strukturkarten zur
Vorhersage der Raumgruppe und des Strukturtyps bindrer Verbindungen vom Typ AB entwerfen
kann, Dann werden zwei ab-initio-Pseudopotentialtheorien im einzelnen verglichen. Die Einteilchenglei-
chung fiir alle Elektronenschalen und der Spin-Dichte-Funktional-Formalismus sind fiir beide Theorien
der Ausgangspunkt, Die Ubertragharkeit des Pseudopotentials auf andere chemische Umgebungen
wird in beiden Theorien angestrebt, die auferlegten Bedingungen unterscheiden sich jedoch in einigen
Punkten. Theorie A verwendet die Schrodinger-Gleichung als Ausgangspunkt. Als KenngroBen werden
die Nullstelien eines abgeschirmten Pseudopotentials genommen. Die Strukturenergie wird durch die
s-p-Flektronen beherrscht, auch im Falle der Verbindungen zweier Ubergangsmetalle. Theorie B geht
von den Dirac-Gleichungen aus und setzt die Spin—Bahn-Kopplung, die fiir schwerere Elemente wichtig
ist, in Rechnung. Als charakteristische Radien und Energien dienen dic Koordinaten der Minima der
lonenrumpl-Pseudopotentiale. In beiden Fillen wird eine gute Trennung der Strukturtypen erreicht,
Fiir Theorie B werden auch einige Voraussagen beziiglich der Gitterkonstanten a und der Schmelz-
temperatur graphisch gezeigt.

1. Introduction

The present paper is concerned with attempts to design structure maps, i.c. two-dimensional
diagrams on the axes of which certain empirical or theoretically computed physical quantities
are plotted and in which the structure types and space groups of the crystals can be
topologically separated. Only those crystals may be taken which are in equilibrium under
the same fixed temperature and pressure conditions. If the symbols representing the crystal
structures cluster entirely or partly in separate domains, one may hope to be able to predict
the structure for substances that are still unknown from the properties of the atomic
constituents.

In most cases, two physical quantities have been employed for designing the afore-
mentioned plots, e.g. the difference of electronegativity and the difference of a geometrical
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quantity of the atom. However, there are also exceptions: Pettifor [1], for example, tries to
define the chemical elements only by one quantity. He does not classify them according to
the number of protons, but according to the Mendeleev number intreduced by him, a new
atomic number which is not in agreement with the conventional atomic number of the
glements. Now he plots the symbols for the structure types of AB-type binary compounds
in a diagram whose axes are formed by the new atomic number for constituent A and by
the new atomic number for constituent B. The Pettifor plot indeed shows a good separation
of the compounds into clusters, however, the choice of some of these new atomic numbers
appears to be somewhat arbitrary.

A deviation to the other side is made by Villars [2) who constructed three-dimensional
plots on the basis of three quantities: He employed the electronegativity difference AX, the
size difference AY, and the average number of valence electrons per atom Z. His structural
classifications are very distinct and good, although the work with sixteen two-dimensional
plots — i.e. practically three-dimensional diagrams — is not very handy. As is well known,
the four types of chemical bonding. i.e. metallic, Van der Waals, ionic, and covalent bonding,
mostly occur in a mixed form, ie. the percentages with which they contribute to total
bonding differ from one another. This is in conformity with the empirical finding that band
effects, atomic radii, electronegativity, and hybridization are well suited for making the
space groups of the crystals in the structure maps separable. Frequently, the discussion is
not very clear in individual points, because different authors define the quantities, e.g. the
electronegativity, in different ways. One of the earliest scales of electronegativity used to
the present day is that by Allred and Rochow [3]. Pauling’s scale [4] is more widely used.
It is based for the major part on molecular heats of formation. In contrast to this, the
¢lectronegativity by Phillips [5] is based on fully hybridized crystalline sp® bonds. $t. John
and Bloch [6] use for nontransition elements an electronegativity which is numerically
situated between the values from [4] and [5]. It is computed from the Bloch-Simons orbital
radii and has, thus, been derived from quantum variables. It is the first one among these
quantities which islargely independent of the molecular or crystalline environment. It might
be worthwhile to mention the stages ol development preceding this breakthrough: Mooser
and Pearson [7. 8] at first confined themselves to the separation of monoctet binary
compounds. They used as coordinates the magnitude of the difference of Pauling’s
electronegativity and the average principal quantum number. They also were fairly successful
in the graphical separation of compounds consisting of a transition-metal atom and a
simple-metal atom with N valence electrons, however, with the restriction 3 £ N £ 6. The
separation according to crystal structures can be seen only in some parts of the graphs.

A similarly possible good separation of the crystal structures was obtained by Shaw [9]
for nonoctet compounds. As dual coordinates, he also used, on the one hand, the
electronegativity difference, on the other hand, however, the quantity

HZa4 + Zu)lh(ng + ng)?,

Z , is the atomic number, n, the principal quantum number of the outer orbital of atom A.

A method that is only applicable to fully bonded cubic crystals was developed by Van
Vechten [10] and Phillips [I1]. From the bond lengths and dielectric constants of the
compounds, they computed the average covalent energy gap and the average ionic energy
gap. Thesc two quantities served as variables in their structure maps for octet compounds.
Miedema’s [12] parameters P, = |@} — @fjand P, = |nt"* — nE'3| were successful in the
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prediction of the heats of formation of compounds and in the determination of composition
temperature phase diagrams [13]. @3 is the effective elemental work function, n} the electron
density at the boundary of the Wigner-Seitz atomic cell of atom A.

However, these variables can be used only with moderate success for the separation of
the crystal structures.

2. A Comparison

In the following, we will compare two pscudopotential approaches, which are both based
on first principles and do not contain any fitting of parameters to experimental data. The
first approach, theory A, is the theory by Zunger [14], the second one, theory B, is based
on ideas of Hamann et al. [15]. The theoretical and numerical elaboration of the latter
theory can be found in [16 to 19]. In both theories, the pscudopotentials have been derived
from full-core atom calculations. However, there are certain differences which are to be
made evident here by a comparison. [n both approaches, an all-electron (ae) single-particle
equation and the spin-density-functional formalism [20, 21] are used. There are differences,
however, both in the fundamental equation and in the substitution of the potential by a
pseudopotential. The potential in the Schrodinger-tybe equation is separated in both theories
into an electron-nuclear attraction potential V,,, and an interelectron potential V. ¥,
contains, both Coulomb and exchange and correlation screening. In theory A, we have for
the effective potential

Van(e) = Vo) + Velv) i1
The all-clectron equation is
{_[é) V2 4+ Visloolr) + o0 + V() wylr) = gaplr); (2)

o, is the core charge density, g, the valence charge density. The eigenstates [y;(r)] must be
orthogonal. For the charge density o,

otr) = X w0, (3)

while for theory B we have

elr) = LUGAO® + IF 0, (4)

because here the Schrodinger equation has been substituted by the Dirac equation in its
radial form. This 1s an expedient approach for allowing for the influence of spin—orbit
effects, which is important for the computation of the pseudopotential of heavier elements,

LAY ¥ ) 4 — VLG = 0, (5)
dr r

d(";m p Gyir) — [2/® + &, — V(] aF,(r) = 0, (6)
r r
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where x is the relativistic quantum number and [ the angular momentum guantum number,
with

=1 for j=1-13%,

—~({+1) for j=1+14,

x
i

and
c=a '=137037 and h=m=e=1.

For the splitting of the potential in theory B, we have

Vi) = J B T ()
Ir—r do(r)

It is, in principle, the same as in theory A. The special dependence of the exchange-correlation
energy E,. on ¢ of theory B 1s given in [19]. In theory A, the valence screening V¥ has the
same functional form as the all-electron screening V25, but is a functional of the valence
pseudo-charge density n. Consequently, the pseudopotential single-particle equation of

theory A is

=@V + VER] + Vil 1)) x(x) = &pjlr) (8)
with

n(r) = X 17 )
¥

In theory A, the external potential V,, is directly replaced by the pseudopotential V., and
the transferability is achieved by physical constraints on the pseudo-wave functions y,(r).
The atomic pseudopotential thus obtained is almost independent of energy and state. Two
conditions imposed on the pseudopotentials in the two theories are in agreement:

Firstly, real and pseudo-valence eigenfunctions are in conformity in a prototype atomic
configuration, ie. &, = &, Secondly, real and pseudo-atomic wave functions are in
conformity for radii r which are greater than a chosen core radius r.

For theory A alone, a special choice of unitary rotation coefficients {C.} is required:

Ly

Za(r) = O s (). (10}

The following considerations serve for the explanation of this formula: the pseudo-wave
functions {y,,(r)} are the lowest solutions to

(=Y + o) By + U+ 1y2e?
+ v [nlr)] + v [n(] + v [} 2u(r) = Euzale) . {11

The variable v,, denotes the atomic screening potential of the electrostatic interaction
between the electrons, v, the exchange term, and v, the correlation term. P, is the
projection operator. It is required for the computation of the total pseudopotential ¥, (x, ')
for crystals and other more complicated systems through the superposition of atomic
pseudopotentials,

Violt, £) = 3 oflir — ,) Py
W
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The atoms are situated at the lattice points R,. The real wave functions {y,(r)} originate
from the all-clectron equation

(=Y —(Z, + Z)r + U+ D27 + ple(r) + o,(r)]
+ !"x[Qc(r] + Qv{r}} + vcr[Qc[r] + Q\r(r)ﬂ 1}-‘";(?) = 5n1‘.f’n!(r}- (12)

Index ¢ stands for core, v for valence, Z is the number of electrons.

In theory B, on the other hand, the additional conditions for establishing the transferability
are as follows: thirdly, the integrals from 0 to r of the real and charge densities are in
conformity for each valence state for r > r_.

Fourthly, for r > r_ the logarithmic derivatives of the real and pseudo-wave function are
in conformity. The same applies also to their first energy derivatives.

In theory B, the definition of the pseudopotential is much more complicated. From (5)
and (6). there follows at first approximately a Schrodinger-type equation from which the
major wave function component G,(r) can be computed. Therefrom, a first-step pseudo-
potential I?jg* is derived, with the singularity near r &= 0 being cut off in the screened full-core
potential ¥, The computation is performed independently for each angular-momentum
guantum state, with

Ve = V0 — exp [ (r/rg)™ T + ¢ exp [ rire™ ).

The cut-off radius r; is not an adjustable parameter. The constant ¢} is determined so that
£, = &, s has already been demanded. After a few further steps (‘;ee [17 to 19]), the screened
pseudopotential V“’(r) is unscreened by the valence electrons,

o) . BEJe™
10:1 _ lvl 13
Vithe = Va0 = JI A N "

This valence unscreening signifies a linearization of the exchange-correlation energy as a
function of g,

3. Classification

The bare-ion pseudopotentials of theory B which can be numerically computed from (13)
will now be graphically represented in a few examples. V}"“m and Vo, differ above
all for heavier elements. This is already the case for iron which most probably has
a dominating share in the cores of the terrestrial planets. The strength of the spin—orbit

effects results [rom



Draft

as the crossing points of the pseudopotentials of theory A. We will define our characteristic
radii and energies (potentials) essentially as the minima of the potentials after theory
B, which are reached first coming from the infinite radius r. In this way, these new
characteristic quantities are most easily comparable to the electronegativily, ie. they
are approximately linearly correlated with it. Contrary to [14], we will not classify
the experimental comparative material, subdividing it into octet, suboctet, and superoctet
crystals according to the classical valence-electron concentration. This would of course
enable a better separation into separate domains in the plots, however, the assignment
of an AB-type binary compound to one of the three categories is sometimes somewhat
arbitrary. We have dispensed with this additional distinction in order to remain objective
and to have our diagrams plotted without any corrections by the plotter of the computer.
For all chemical elements from hydrogen up to plutonium, we now have computed
the bare-ion pseudopotentials as a function of the distance r from the atom centre
for all relevant angular momentum quantum numbers [ and for both spin states.
For the purpose of classification, new characteristic quantities were determined from these
curves, as [ar as this was possible,

Fas Vs emol Fmi- vn:]se:nll rpl- Upls ep].;
Finas Umzs €25 rpls upZ: epi; Fends Um3s €mas “5)

r is the radius, v the pseudopotential of the characteristic point. Both are expressed in
atomic units. The pertaining genuineness is 1, if the point on the curve represents the first
potential minimum that is reached coming from the infinite r, and if this minimum is not

sitnated at r = 0. If the minimum is at r = 0, then e = 0. In this case, the pair of numbers
2

) ) . d®v
r, v designates the point of the curve where, simultaneously, o > 0 and the curvature k,
r

coming from infinitely large r, assumes a maximum, with

d% v\

The indices m in (15) relate to the following equation
Viem sl = Piere) — (0 + 12 Vi), (17

the indices p, on the other hand, to
frion L fon ; 50
V!+'l.-'2(r] = Vi + 2 Vit(r). (18)

The second index of (15) stands for the angular momentum guantum number, Fig, 1 shows
the pseudopotentials of a few elements. With phosphorus, the splitting of the curves (17)
and (18} is only weakly indicated for | = 1 and appears only in the form of a line thickening.
With germanium, but in particular with tantalum, the relativistic bifurcation can be clearly
seen. The characteristic points (15), marked by short strokes on the curves, were determined
by means of the computer. The theoretical quantities represented in Fig. 2 to 10 originate
from theory B, the experimental values from the encyclopaedia by Villars and Calvert
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Fig. 1. The pseudopotentials of phosphorus, germanium, and tantalum, computed by means of (17)
and {18)
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Fig. 2. Radius-radius diagram (in at. units). On the abscissa, 10 (1/2) (Foo; + Fues) is plotted, and on
the ordinate, 10 {1/2) (2, + r,2;). Solid diamonds represent compounds and alloys of two transition
metals (TT), crosses two simple metals (SS). Open diamonds represent the compounds and alloys of
a transition metal and of a simple metal (ST)
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Fig. 3. Radius-radius diagram. On the coordinales, the same quantities are plotted as in Fig. 2;
however, not all compounds and alloys have been permitted here, but only those consisting of elements
of the fourth, fifth, and sixths periods of the Periodic Teble with the exception of the rare-earth elements.
The symbols represent intervals of the melting temperature T, in K.

Solid diamonds T, = 2028,
solid squares 2028 > T, = 1487,
open diamonds 1487 = T, = 946,
OpEn squares 946 > T, = 405,

CrOsses 405 = T,
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Fig. 4. Radius - radius diagram. On the coordinates, the same quantitics are plotted as in Fig. 2. Asin
Fig 3, the diagram is limited to elements of the fourth, fifth, and sixth periods without lanthanides.
The symbols denote the space group and structure type of the crystal lattice. For more details, see Table 1

[22]. Unless specified otherwise, the quantities are represented in at. units. In Fig. 2 to 4,
the same simple combination of the characteristic radii has each time been plotted on the
axes, on the abscissa the mean value of the radii for d-electrons and on the ordinate the
mean value of the radii for s-electrons. The last index of the quantities used for explaining
the figures denotes the type of atom. The varying number of measuring points in Fig. 3
and 4 is simply due to the fact whether the melting temperature and the lattice type are
known. Here, as in the other figures, no points were excluded. Fig. 2 and Fig. 3 show that
the types TT, ST, and SS are by no means randomly distributed. If, for example, the
theoretical computation yiclds a mean to high value for the mean of the radii for s-clectrons
and a low value for that of d-electrons, we mostly have to do with TT with a higher melting
temperature. Above all in Fig. 3 and 4, the experimental points are clearly arranged in
clusters. Good predictions as to the lattice constants can be made from a radius—potential
diagram for s-electrons (see Fig. 5). Fig. 6 shows that, on lines with an identical lattice
structure, also the lattice structure can be predicted to a certain extent. Fig. 7 demonstrates
that the space group and structure type can be predicted for many areas of the theoretically
computed diagram. A similar representation for all lattices is given in Fig. 8. Certain lines
are dominated here by certain structure types, so that predictions are still possible in this
mixture of types without a separation into TT, ST, and SS. The properties can be predicted
with greater certainty by the combination of several diagrams. Many of these plots have
nat been printed here for reasons of space. From the Bloch-Simons [6] orbital shell radii
ri¥ and ¥, two quantities, r, and r,, have formerly been defined

rpo= 0 4 and p, = pl 2
the numbers relating to two types of atoms, and

l",‘(ﬂ = r;z] F;:” and J,.c[':x) = r.:zﬂ + "j[.”-



10

Draft

Table 1
The assignment of symbols for the plots in which the symbols express the space group of
the crystal lattice

space group structure symbol description of symbol
type

Fm3Im ClNa n solid square
Fm3m Cu o open square
Fiim SZn O open circle
Fd3m NaTl A right angle,

tip pointing upward
Pm3im ClCs * solid diamond
P6,/mme AsNi ™ solid circle
P65 /mme Mg & open diamond
Poyme SZn v right angle,

tip peinting downward
Pnma BFe v solid triangle,

tip pointing downward
Pnma MnP Y solid triangle,

tip pointing upward
P4/mmm AuCu « solid triangle,

tip pointing to the lelt
P4/nmm CuTi > solid triangle,

tip pointing to the right
Pdin GeK < right angle,

tip pointing to the left
P2,3 FeSi = right angle,

tip pointing to the right
Cmem BCr + upright cross
Im3m W % oblique cross
14, facd NaPb * oblique cross with additional

horizontal beam

According to [23], r'® corresponds to the p*-sp hybrids, the quantity ', on the other hand,
to the s-p ¢ hybrids. Analogously, based on our characteristic radii, we define the following
quantities, the first one being a kind of size mismatch,

R = |(ryy + Fmod) — (Fy2 + Too)l (19)
with

Py = (rg + 2 and  ryy o= (s + a2, (20)
A measure for the sum of the orbital nonlocality is obtained from

R = lriy = fwosl + Iriz = ool - (21)

In [19], it has been shown that, with the help of these dual coordinates, particularly good
separations according to the crystal structure are possible. Fig. 9 serves here as a fairly good
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Fig. 5. Radius—potential diagram with 10 (1/2) {ry0; 4+ rae2) on the abscissa and (1/2) (Umas + Pmoz)
on the ordinate. Only compounds and alloys of one simple and one transition metal (S8T) each with
NacCl lattices as symbols were plotted, These symbols represent the following intervals of the lattice
constants a (in 107" m).

Solid diamonds a = 6.3665,
solid squares 6.3665 > a = 58517,
open diamonds 58517 = a = 53369,
OpEN SquUATes 53369 = a = 48221,
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Fig 6. Radius-potential diagram. The coordinates represent the same quantities as in Fig. 5. Also
here, only ST has been plotted in symbols. The symbols denote the space group and structure type of
the crystal lattice. For further explanations, see Table 1
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example. For Fig. 10, a simple function F was used which results from F =4 (F, + F;)and

F:x =10 ;; T ll_(rn-_Ua - 1} Vi + [22)
S, is the column in the Periodic Table. o is 1 or 2, depending on the type of atom. For com-
pounds and alloys of two transition metals (TT), we observe an increase in the melting
temperarature with F. For higher temperatures, the areas covered by TT, 5T, and S8 are

clearly separated.
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Fig. 10. T,,- F diagram. On the abscissa the melting temperature T, is plotted in 100 “C, on the ordinate
the theoretically computed function F according to (22) in at. units. Solid diamonds represent TT,
open diamonds ST, crosses 55
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4, Conclusions

After an introduction into the preparation of structure maps with semi-empirical theories,
two pseudopotential theories, A and B, are compared, which are based on first principles
and for which an optimum transferability to various systems was attempted. For theory
B, the applicability is shown in figures. Characteristic quantities were determined for each
pseudopotential curve. With the help of plots, space group and structure type of the crystals,
the lattice constants, the melting temperature, and other physical quantities can be predicted.
In theory B, also the pseudopotential curves for the d-electrons play a role, while in theory
A, the influence of the d-electrons is only indirect, even for intermetallic compounds of two
transition metals.
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