U. Walzer. Systematization of binary intermetallic compounds. Phys. Status Solidi (b),
162:75-88, 1990

Draft

Zentralinstitut fiir Physik der Erde, Institutsteil Jena')
Systematization of Binary Intermetallic Compounds
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Norm-conserving pseudopotentials derived from the Dirac equation serve for the derivation of new
characteristic quantities. For each chemical element and cach electron shell, two characteristic energy
and two characteristic spacing quantities are calculated. Therefrom, functions are formed for binary
compounds and alloys of type AB. If two each of these functions are plotted in pairs, an arrangement
is obtained according to regions with crystals of the same structure type and same space group, of
the same melting temperature class ete, This systematics enables one to eliminate unfavourahle
combinations in the search for specific physical properties. A few results are plotted.

Aus der Dirac-Gleichung hergeleitete normierte Pseudopotentiale dienen zur Herleitung neuer
KenngroBen, Fiir jedes chemische Element und jede Elektronenschale werden zwei charakteristische
Energie- und zwei charakteristische AbstandsgroBlen berechnet. Fiir bindre Verbindungen und
Legierungen vom Typ AB werden daraus Funktionen gebildet. Trigt man je zwei dieser Funktionen
paarweise aul, so ergibt sich eine Einteilung nach Gebieten mit Kristallen gleichen Strukturtyps und
gleicher Raumgruppe, gleicher Schmelztemperaturklasse usw. Diese Systematiken ergeben die Moglich-
keit, bei der Suche nach gewiinschten physikalischen Eigenschaften ungiinstige Kombinationen
auszuschalten. Es werden einige Ergebnisse graphisch dargestellt,

1. Ilntroduction

It is the subject of the present paper to derive new charactertistic quantities from relativistic
norm-conserving pseudopotentials. These quantities will then be used for predicting physical
properties of (1:1) binary intermetallic compounds and for a systematization of these
compounds. It is the very object of the author to employ these findings in a theory of the
chemical composition of planetary cores; it goes without saying that metallurgical
applications are also conceivable. Thus, these objectives are actually of a very practical
nature; however, starting from the Schriodinger equation or from the Dirac equation, we
nevertheless want to introduce as few heuristic assumptions as possible in the course of
deductions. As is well known, the Schriédinger equation can be exactly solved only for very
simple systems. Therefore, Hartree [1] approximated the wave function i for a many-electron
system as a product,

iy, tg, o ty) = () o) opyity) . (1)

Each of these i; is obtained as the solution of a one-electron Schrédinger equation. The
potential contained therein is the result of the addition of the potentials due to the nuclei
and that of the other electrons, which results from Poisson’s equation. If not all of the ;s
are equal, this statement neglects the exchange of electrons, and we will not get a proper
arrangement of the energy levels. Fock [2), therefore, has changed this approximation such
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that the total wave function exhibits the appropriate symmetry behaviour with respect to
electron exchange. In this way, a new nonlocal exchange term is created in the Schrodinger
equation, so that the Fermi statistics is taken into consideration. At the same time, however,
we still use single-particle equations. Correction terms going beyond that, and which are
needed for approximating the exact solution of the Schridinger equation, are designated
as correlation terms.

In contrast to these self-consistent-field calculations, the density functional theory [3 to
5] depends to a lesser degree on the configuration of electrons. In the latter theory, it is
shown that the total energy E of a system and the guantities which can be derived from it
(see, e.g., [6]) can be represented as a function of an integrated quantity, the charge density
g. The Thomas-Fermi approach [7] is a special case of the density functional theory. The
introduction of first-principle pseudopotentials [8, 9], which were derived from the density
functional formalism, constituted a great step I"Urlward. They permit, for example, the
approximately correct calculation of reflectivity and absorption spectra. band structures,
total energies, and structural properties. We are using here the concept of Hamann et al.
[10] and the resulting development line of pseudopotentials (Kleinman [11], Bachelet et al.
[12), Greenside and Schliiter [13]) for developing our computer programs for the new
characteristic quantities.

2. Theory

For the (small) exchange—correlation energy E,_ in the local density approximation, we have
E, = [dre() s fe()]. (2)

After[14, 15, 12], we use the following approximation for the correlation energy per electron:

o, = —0.1432/(1 + 10529712 4+ 0.3334r) for r =1 (3)
and

e, = —0.0480 + 00311 Inr, — 0.0116r, + 0.0020r, Inr, for r < 1. (4)
Let be

g, = —0.4582/r, (5)

for the exchange energy per electron.
The relation between ¢, and the charge density g is obtained for the unpolarized gas from

BIC = ﬁl + 5(" [6}
and

o' = @r/r? (7
with all quantities being expressed in atomic units. The other energy contributions can be
calculated exactly. After [4], we have for the energy functional

Efg] = Tyle] + [ dr o) [Viu(r) + § ()] + E,c[e]. (8)

Ty is the kinetic energy for a system without electron-electron interactions, V,,, the potential
generated by the nuclei, @ the Coulomb potential generated by the electrons,

B(r) = jdr’ o) 9)
[e— |
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From (8), due to the variational principle, we get

8E{p) 8T,
LRl P Fir) =
Se)  bew T DT H (o
with
aF
Vi) = o) + oo |y (11
dg(r)

and p the Lagrange multiplier. Now, we only have to solve a single-particle equation for
noninteracting particles,

[V + Vil piled = eqpi(). (12)

The charge density is
N
elt) = ). lwil*. (13)
i=1

Since relativistic effects have an influence for the heavier atoms, the Dirac equation is taken
as a starling point instead of the Schridinger equation. For a central potential V{r), this
linear matrix equation with first-order partial derivations is simplified such that the following
two coupled scalar equations are formed:

GO0y X Gy - 277 4 i = VN 2Fi() = 0, (14
dr r

) % by + [~ Vi) aGitr) = 0, (15)
dr r

F; is the minor wave-function component; G; is the major wave-function component.
Therefrom, through summation over occupied states i, we obtain the charge density g,

N
elr) = ._Zl OF:(r)* + 1G] (16)

The relativistic quantum number » results from

W

—(f+1) for j=1+1%
and
w=1 for j=1-4%.

Atomic units are used throughout the entire paper, that is, Ai=m=e=1 and
c=a ' = 137.037.

Neglecting terms of higher order, the two coupled equations (14) and (15) can be
summarized as follows outside the core region, with x being the afore-mentioned relativistic
guantum number, [ the angular momentum quantum number:

1 (dex w(x + 1)

£O, _xerh g,) (Vi =G, = 0. (17)
r r

2
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This is the fundamental equation for deducing the pseudopotentials which are based on
the principles of [10]:

a) True and pseudo atomic wave functions become identical beyond the core radius r..

b) True and pseudo valence eigenvalues are in agreement for a certain atomic configu-
ration,

¢) If the integrals from 0 to r are formed for the true and pseudo charge densities, with
r > r., they are found to be in conformity.

d) For r > r_, the logarithmic derivatives of the true and pseudo wave function are in
agreement. The same applies to their first energy derivatives.

The transferability achieved by the last two conditions means that the pseudopotentials
can be used for both individual atoms and for molecules and solids; the chemical
environment, too, does not affect the usability. — The interpolation formulas for the
calculation of the exchange-correlation energy from the charge density given above have
to be relativistically corrected. To this end, the exchange energy per electron ¢, has to be
multiplied by f; [16],

fi=1— G20 + P2 —In[B + (1 + B2UP2, (18)
where
f = 0.0140/r, .
The exchange-correlation potential p,,
d r, de
e = (o) =2 — 2 - 19
e = 30 loscl@)] = &0 — 3 ar, (19)

has to be multiplied by f,,
L= — (2 + G2In[f + (1 + FHVRA + 5. (20)

The pseudopotentials have to be calculated in five steps:

a) The major wave-function component has to be determined from (17). From it, of
course, one can also calculate F, and a set of one-electron eigenvalues.

b} Inthescreened full-core potential, the singularity is cut off at the coordinate origin of r.

¢) Next, a normalization follows.

d) By inverting the radial Schridinger equation, the final screened pseudopotentials are
created.

e) As a last step, these final screened pseudopotentials are unscreened.

The pseudopotentials thus defined are parametrized. Irrespective of whether one takes
the initial parameters «,, oy, o3, C(, C;, Cy, Cy, Cs. Cg from [12] or whether one calculates
them anew in the way specified in [17], the following computational scheme suggests itself:

We use a quantity, §;,, as a starting point for our programming. We define

S = §dry rf e mrmar (21)

=t |

This can be well used as a subroutine because, on the one hand. the error integral is

1‘10

erf(m) =

2
je tdr, = ~/—_S,—m {22y
Vg

ym

=
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if n= -2 2,=0, and o, = 1. On the other hand, the overlap matrix can then be
reformulated as follows:
Sy = lim 5, . 23)

The before-mentioned psendopotential parameters «; then serve as «; and o, with o; = a;, ,
for j = 1, 2, 3. If for both indices we have i = 3 and k = 3, then n = 0. If only one of the
indices i and k is smaller than or equal to 3, then n = 2. 1f i > 3 and k > 3, then n = 4.
Thus, 21 integrals S, are obtained for each chemical element and each angular-momentum

quantum number /, because §;, = §,;. For all elements with an atomic number Z, = 22 and
also for some lighter elements, other additional 21 integrals 5;, are not negligibly small for a
few I These integrals define the spin—orbit pseudopotential. This is a conseguence of relativ-
istic effects. By solving the following equations, we obtain from 21 matrix elements 5, each,
21 matrix elements Q,, each, and through the inverse matrix transformation we get Qg '

Qi = (5,0

Q2= 85120155 Q3= 813/0Q1,: Qo = 814/Q11 3

Qys = §5/0413 Q16 =816/ 2

Qs = (85, — sz]ll';z V

Qn = (53 — 0120,3)/Q32 Qay = (334 — QuQu}fo:z:

Qa5 = (525 — Q12045)/Cz Q2 = (535 — 0120160/ Q225

Q33 = (533 — Q1 — 033" ;

Qas = (534 = 030,14 — 0230240353

Qss = (535 — ©13Qs5 — 0230:5)/C53;

Q36 = (535 — Q13016 — Q23026)/C33!

Quq = (Sas — 0Fs — Q34 — 03"

Q45 = (Ss5 — QreCis — 024025 — 03:035)/Qual

Qs = (545 — Q14016 — 024025 — @3:036)/0ual

Qs5 = (855 — 0is - Qis - Qgs - Qiﬁ)j;z V

Oss = (556 = 015016 — 025036 — Q350365 — Q45Q4s)/0ss;

Qéﬁ = (Soﬁ - Q%G - Q%ﬁ - gﬁ - Qi& - Qib‘]“l;

Q.=0 for i>k. (24)
Using this approach, the components of the orthogonality matrix Q, were successively

determined. In the nonrelativistic case, only one average pseudopotential F*"(r) per | occurs.

Due to the spin-orbit effect, we observe in the relativistic case a split-up into ¥}, and
7 lon
I—1/2r

" . IT+1 .

me—ul.'z = V{"ir) - T Vit(r),

. . I .

Viegz = Vi™r) + 2 Vitir}. 125)

The curves defined by (25) practically coincide for light elements. For medium-heavy, but
particularly for heavy elements, we obtain two distinctly separate curves. The average
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pseudopotential ¥*" is obtained as the sum from the core potential

l;:;.,;eff') - _ _Zl {i Ci_:ﬁle erf[[:c:_:nmlllrl F’]} [26}

r f=1

and the short-range /-dependent term

3
AP = 3 (A4 + A e (27)

i=1
with the A, following from (28).

Ay = —Cql0ss »

As = —(Cs + Qs646)/Qss

Ay = —(Cy + Qusds + QupAs)/Qas

Ay = —{Ca+ Qaudy + Qasds + C6de)/Qas

Ay = —(Cy + @3y + Quady + Qasds + Qo646 Qa2

Ay = —(Cy + Qp24; + 0343 + Qrada + Qpsds + Q1646)/0y, - (28)

73#(r) is obtained as given in (27). It defines the strength of spin—orbit effects. The valence
charge Z, and the constants Cj*, of*, C, and o; are the parameters of the pseudopotentials,
It is obvious that r = 0 has to be excluded from (26). One can, however, approximate this
value arbitrarily. Various attempts have been made to predict the space group and the
structure type of crystals, the melting temperature, and other properties for AB compounds.
In these attempts, two phenomenological scales are frequently used for making plots. The
characteristic points in these plots are frequently arranged in a systematic manner. Thus,
for example, in certain partial regions of the plots, points prevail which define the same
crystal structure. Among the guantities plotted on the coordinates we have, e.g., size factors,
electronegativity, coordination number, covalent energy gap, ionic energy gap, etc. We want
to adopt a different approach in this paper. The author has developed a computational
program for calculating the bare-ion pseudopotentials ¥}, , according to (25) as a function
of r. Both the potentials and the distance r from the centre of the atoms are calculated in
atomic units. Depending on the angular momentum quantum number [, we obtain different
pseudopotential curves which still split for heavier atoms (spin—orbit splitting). For each
curve, a characteristic point was determined as follows: If the potential v has its smallest
value for » = 0 on the respective curve, we assume that the genuineness e = 0. Otherwise,
e = 1. For ¢ = 0, the characteristic pair of numbers r, v defines the point on the curve
where d?v/dr* > 0 and where the curvature k, coming from infinitely large distance r,
reaches a maximum for the first time. We have

dgl.' do 27 =3z
-]

For e = 1, the characteristic radius » and the characteristic potential v define the first
minimum of the curve which is reached coming from the infinite r. In this way, the
following quantities were determined for almost all stable elements:

i

Totr Umor €mo: Tmis Pmis €mis I'plz r"pls epl;

Tenzy Umas €mas rsz L:pl- epz; Trads Umas €a -
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Each of these numerical triples, separated from one another by a semicolon, defines a
characteristic point: Radius, pseudopotential, and genuineness. The first index designates
the formula used: m means that the first formula has been taken from (25), p designates
the second formula from (25). The second index is the angular momentum quantum number.
The third index occurring in the description of the diagrams means a label for the sort of
atom. For a binary compound, it can be 1 or 2.
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Fig. 1. Pseudopotential curves for a) platinum, b) praseodymium, and ¢) krypton. For [ = 1 anc}I = 2,
spin—orbit splitting can be clearly seen. The characteristic points which have also been determined by
means of a computer are marked
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Fig. 2. Radius-radius diagram. The diagram shows (1 : 1) intermetallic compounds of a simple metal
and a transition metal each. The following lattices have been selected: Space group Fm3m and
structure type CINa (m) and space group Pm3m and structure type CICs (o) as well as P6y/mme (Mg)
and Im3m (W). The latter ones, however, do not occur in the section

3. Results and Their Diagrammatic Representation

The author has written new computational programs on the basis of the theory briefly
outlined above. The pseudopotentials for a noble metal {platinum), a rare-earth element
(praseodymium), and a noble gas (krypton) are shown as examples in Fig. la to c. The
intersection points of the short lines with the curves define the characteristic points, for

Table 1

Symbols for the diagrams in which the symbols represent the space group of the erystal lattice

space group
Fimn3m
Fm3m
Fi3m
Fd3m
Pm3m
Phy/mme
Ph;/mme
P6yme
Pnma
Pnma
P4/mmm
Pd/nmm
Fd3n
P2,3
Cmem
Im3m

14, /acd

structure type

ClNa
Cu
SZn
NaTl
ClCs
AsNi
Mg
5Zn
BFe
MnP
AuCu
CuTi
Gek
FeSi
BCr
w
NaPb

symbaol

*Fx b VA Y ARPd: 0% >00N
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Fig. 3. Radius—radius diagram. & denote compounds and alloys of two transition metals, abbreviated
TT. & denote compounds and alloys of transition metal and simple metal, abbreviated ST, + represent
those of two simple metals, abbreviated 58, All lattice types were permitted

example, in Fig. 1a from left to right {ryz vmah (72 U2k (Fmzs Pmah (Faats Ut )e (Fpys U and
below (r g Umel)-

All other diagrams, too, have been prepared by means of a computer. Experimental data
have been taken from Pearson’s handbook which has been compiled by Villars and Calvert
[18]. Not a single value has been eliminated. Table 1 explains the symbols used for Fig. 2 and §
to 9. In these diagrams, one symbol each is used for the space group and structure type of
the crystals. In Fig. 2, we observe a distinct regionalization of the four prevailing lattices.
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Fig 4. Radius—radius diagram. & T, = 2076, @ 2076 > T, = 1516, o 1516 = T, = 956,
o956 =T, = 396, + 396 > T,
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Fig. 5. Radius-melting temperature diagram. a) Symbols as in Table 1, b) with a different meaning of
the symbols:# represent compounds and alloys of two transition metals (TT}), + those of two simple
metals (8S), ¢ correspond to compounds and alloys of a simple metal and a transition metal (ST)

Since the quantities plotted on abscissa and ordinate can be calculated from the theory
outlined above, it is also possible to predict the lattice structure for intermetallic compounds
that have not yet been produced. In the radius-radius diagram given in Fig. 3, a systematic
distribution of the symbols can also be observed. The point clusters TT, ST, and SS are
clearly separated particularly for greater radii. The structure of this distribution, however,
is by no means simple. Fig. 4 is closely related to Fig. 3. The same quantities are plotted
on abscissa and ordinate, but the symbols represent a classification of the melting
temperatures as far as they are known. Basically, the TT cloud corresponds to high
temperatures, 8T to medium, and S5 to low temperatures, but for TT with particularly small
10 (1/2) (Frzy + Fuzz) the melting temperatures are also low. For more details, see the
caption. In Fig. 3, we find a number of points, i.e. of intermetallic compounds, which are
missing in Fig. 4. In these cases, the experimental melting temperature is not known. In
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Fig. 6. Potential-lattice constant (b) diagram. Symbals as in Table |

Fig. 5a, the melting temperature has been plotted versus a kind of transformed d-state
radius, namely versus 10 (1/2) (r,z; + rya2) According to Table [, the symbols represent
the space group of the crystal lattice. For comparison, the related representation in Fig.
5b shows the distribution for TT, ST, and SS. It can be seen that the TT, ST, and S5 areas
for higher melting temperatures or higher 10 (1/2) (2, + Frum22) are located separately from
one another. With one exception, the cluster of TT compounds with very low values of
10 (1/2) (a1 + Fmzz) belongs to the space group P6;/mme and the structure type Mg.
Fig. 6 shows a pseudopotential-lattice constant {h) diagram. Only the three most
frequently occurring crystal lattices playing a part in this case are shown. The space group
Pnma, linked to the structure type MnP, is observed only on a small area at the right
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Fig. 7. Potential -lattice constant (a) diagram. Symbols as in Table |
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Fig. 8. Radiuslattice constant (a) diagram. Symbols as in Table |

bottom of the diagram, while for space group Pnma, linked to structure type BFe, as well
as for space group Cmecm, linked to structure type BCr, one horizontal ribbon-like area
each, and additionaliy for small absolute amounts of the potential, one vertical ribbon-like
area each are found. Fig. 7 is well comparable with Fig. 6. here, the lattice constant a has
been plotted versus the same combination of pseudopotentials. The ecrystal lattices show
a comparable arrangement into separate areas, but five types of crystal lattices are prevailing
here. In the following enumeration, they are defined each time by the space group and the
structure type and separated from one another by semicolons: Pm3m, CICs; Fm3m, CINa;
P6,/mme, Mg; Cmem, BCr; Pnma, BFe. In Fig. 8, a radius—lattice constant diagram, only
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Fig. 9. Radius-radius diagram. Only TT compounds are shown, namely the lattices (P6,/mme, Mg)
and {Pm3m, CICs)
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Fig. 10. Radius-lattice constant (a) diagram. Symbols as in Table 1

lattices of space group Pnma and of structure type BFe are shown. The points are arranged
here in four lines, The upper short line and the lower long line are formed by (1 : 1) compounds
and alloys of type ST, while the two centre lines correspond to type TT. A further systematic
arrangement can be observed in Fig. 9. The two radius quantities can be theoretically
calculated. The two lattice types (P6,/mmc, Mg) and (Pm3m, CICs) are arranged in clusters,
so that predictions can be made for the case that the lattice is still unknown. The general
distribution of the lattices (see Table 1) is shown in a radius-—lattice constant (a) diagram
(see Fig. 10). Here, too, individual partial regions of the diagram area are dominated by a
certain lattice type.

4. Conclusions

Pseudopotentials that can be derived from the density functional theory have been
numerically determined by means of a new computer program. For heavier atomic nuclei,
the relativistic spin—orbit splitting of the curves is taken into consideration. For each
pseudopotential-spacing curve, one characteristic point is determined. In diagrammatic
representations, certain simple combinations of these characteristic quantities lead to the
formation of distinct areas, depending on the crystal lattice, melting point, lattice constants,
etc. This was observed for binary intermetallic AB compounds and alloys; the method is
probably also applicable to other mixture ratios. Thus, the physical quantities studied can
be predicted to a certain extent., At any rate, when searching for compounds with specific
physical quantities, it is possible to considerably reduce experimental expenditure.
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