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A description of the d-band structure in which the pseudopotential theory is combined with the
muffin-tin orbital theory serves for the caleulation of the cohesive properties of d-state metals.
The coupling of free-electron states and local, non-overlapping d-states is also taken into account.
On this basis, two new models are developed. In both the models, it is assumed that the ratio of
nearest-neighbour separation to the atomic radius is independent of the pressure. In the first
model (MB), the additional condition is that a redistribution of electrons between the two outer
shells, which are not completely filled, is permissible. In the second model (MC), the requirement is
that for elements with a filled d-shell the theoretical bulk modulus at vanishing pressure is exactly
equal to the experimental bulk modulus at vanishing pressure and that the pressure exactly
vanishes for the zero-pressure volume. In & comparison with various kinds of measured values,
MC proves to be particular successful for all d-state metals except Se, Ti, and Nb. In both the
models, the initial pressure derivative of the bulk modunlus is not an input parameter, but can be
predicted.

Eine Beschreibung der d-Band-Struktur, in der die Pseudopotentialtheorie mit der ,,muffin-tin“-
Orblmltheone kombiniert wird, wird fiir die Berechnung der Koh#sionseigenschaften von Uber-

llen benutzt. Die Kopplung der Zustinde freier Elektronen und lokaler, nichtiber-
lappend.er d-Zustiinde wird ebenfalls beriicksichtigt. Auf dieser Grundlage werden zwei neue
Modelle entwickelt. In beiden Modellen wird angenommen, daB das Verhiltnis des Abstandes
niichster Nachbarn zum Atomradius unabhingig vom Druck ist. Im ersten Modell (MB) ist die
zusitzliche Bedingung, dall eine Umverteilung der Elektronen zwischen den beiden duferen
Schalen, die nicht vollstindig gefiillt sind, erlaubt ist. Im zweiten Modell (MC) ist die Forderung,
daB fiir Elemente mit einer gefiillten d-Schale der theoretische Kompressionsmodul bei verschwin-
dendem Druck dem experimentellen Kompressior dul bei verschwindendem Druck exakt gleich
ist und daB der Druck fiir das Nulldruckvolumen exakt verschwindet. In einem Vergleich mit
verachiedenen Arten von MeBwerten zeigt sich MC als besonders erfolgreich fiir alle Ubergangs-
Metalle auBer Se, Ti und Nb. In beiden Modellen ist die Ableitung des Kompressionsmoduls nach
dem Anfangsdruck kein einzugebender Parameter, sondern kann vorhergesagt werden,

1. Introduetion

Quite diverse methods are used for calculating the pressure p, the bulk modulus B,
and other cohesion-related variables for d-state metals. Migault’s method (I, 2],
for example, is well suited for practical high-pressure research, He obtains the equa-
tion of state from a Morse potential and from a formula for the dependence of the
Griineisenparameter ¢ on the relative volume x,

8 —4 =z d¥pa!)[da?
6 2 d{pajdx
For j — 0 the Griineisen parameter is obtained according to Slater [3], for j = 2/3

according to Dugdale and MeDonald [4], and for j = 4/3 according to Vashchenko
and Zubarev [5]. Whereas the constants of the Morse potential follow from conditions
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at vanishing pressure, Migault introduced j as material-specific parameter. He deter-
mined it in such a way that for each individual metal the theoretical Hugoniot curves
run in an optimum way through the measuring points. In [6] the method has been
somewhat generalized. The Birch-Murnaghan equation of state is widely used. Tt
involves the determination of the zero-pressure bulk modulus B, and the initial pres-
sure derivative of the bulk modulus B, through the fitting of the theoretical curve to
the experimental pressure-volume data. Thus, e.g., Heinz and Jeanloz [7] determined
B, and B, from room-temperature static-compression data of gold.

Unlike the authors of these semi-empirical papers, other authors have attempted
to derive the afore-mentioned variables from first principles. Principally, it would be
necessary to solve a relativistic extension of the Schridinger equation for a multi-
partiele problem. This is practically impossible, so that one has to rely on approxima-
tions. For pressures above 10 TPa, successes have been achieved by means of statistical
Thomas-Fermi-Dirac (TFD) models. By introducing a new correction of the gradient
of the local electron density, Perrot (8, 9], with a great deal of numerieal work, cal-
culated the equation of state for a few metala with filled lower electron shells, with the
TFD proving to be reliable for < 0.02 in lithium, z = (.05 in beryllium and alumi-
nium, and = = 0.1 in copper. Unfortunately, these caleulations cannof be applied
in geophysics because the pressures in the earth only reach to a maximum of
363.85 GPa, so that the relative volume x is much greater, and iron, nickel, and other
metals with only partially filled d-shells are assumed to be present in the earth’s core.
Moruzzi et al. [10] self-consistently calculated the energy bands, among other things
also for d-band metals. The zero-pressure variables such as the cohesive energy and
bulk modulus obtained as a result, at least for 4d-metals, are very close to the measured
values, Computational expenditure, however, is very high, so that the idea to repeat
these caleulations for high pressures appears to be hardly attractive. On the other
hand, asttempts should also be made in geophysics and astrophysies as well as in ap-
plied high-pressure research to do away with the semi-empirical methods mentioned
in the beginning and to provide theory with a more solid physical foundation to im-
prove extrapolatability. It is also not our goal to fit the theory with free parameters
to facilitate adaptation to a theory, but to calculate them from theory with the help
of well-known inputparameters. Due to the envisaged geophysical application, the
theory should be a unified theory for all d-state metals.

Andersen (see [12]), also basing on the density functional formalism [11], has
developed his atomic sphere approximation (ASA). Pettifor [13] showed that the
calculation of the cohesive properties is largely independent of the details of the band
structure computed by means of ASA. Harrison and coworkers [14, 15] also have
shown that a separation of the electronic states into local, non-overlapping d-states
and free-electron states is possible, with coupling between them being taken into
account. A good introduction is given by Pettifor [16]. In the following, basing on
the considerations of the quoted authors, we develop two new models, which are
related to one another, some simple and plausible additional assumptions being newly
introduced. The models will be compared with measured values. The parameters will
not be fitted.

2. Theory

Let the number of valence electrons per ion be Z, that of d-electrons Z;, and that of
nearly free s-electrona Z,. In this case

E=2Z,+Z. (1)
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Inspired by [17 to 19], we regard Z, and Z; as variables of the atomic volume £2,
which is a function of the pressure p, so that we may cover the transfer of electrons
from s to d bands caused by the pressure as well as the occasional reverse transfer,

2
2.9 (2 - 2y + 20 )+ @y~ O 2 + ., @)
where 2, is the atomie volume at zero-pressure, and
. dZ () . A2
0 _ o 0 o _ L)
Zy = Z,(82), Z9 30 i and Z9 a0t 9-_90. (3)

At first, we calculate the share Ky, to the total energy per ion occurring due to the
coupling that broadens the d-states into banda. Using the approximation of the den-
sity of d-states according to Friedel {20], we get

W
E, = — zﬁd Z4(10 — Z3) . (4)
The bandwidth is
1202
Wy [ = ] (T X Phlra) (5)
a i j+i
with
Vo= (3 & Viamlr)!2. (6)

The coupling between the local non-overlapping d-states and the free electron states
is expressed by

. 2m
Vagm = {d'| H |d} _ﬁ%

d'| A kY (B A|d)
-

To obtain ¥, a muffin-tin potential is assumed. For the hybridization potential [21]

we have

(7)

A =8V — (d 3V |d) . (8)
The plane wave is defined by
Iz
) = Q74 E (@1 + 1) ik lﬁ] Y4(6,, @) e . ©)

The d-states are expressed by

1d} = By(r) Y26, ©y) . (10)
1; is the position vector of the atom, m the mass, and e the electric charge of the elec-
tron, R, is the radial d-state wave function, Y{ and Y are spherical harmonies, 6,, 0,

@,, P, are angular coordinates, r is the interionic distance, N, the number of atoms,
i Planck’s constant divided by 2x.

g 'J’Jgdo + 2mdar - 205az |12
¥ P K b R
n(*) oy [ 5 (11)
with
45 30 15
Nago = — = NaaL =" Nadz = - (12)

We now intreduce two assumptions, First, we assume that the ratio of the nearest-
neighbour separation to the atomic radius remains a constant, K, also at rising pres-
sure. Secondly, we assume that Z” and corresponding constants obtained from higher
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derivatives, vanish. We take into account that

(12)v2 [’iﬁdo_—-‘- 2?335@ + 2;;%42]1;2 a0

(13)

and, to facilitate the formulation, we introduce the following three material-dependent
constants:

a = ZE - ZQ'QO 3
b =27, (14)
¢ =% —Z0 4+ EY0,.

Thus, the band-broadening share to the energy is

2m K*\ 3 10

7 is the number of nearest neighbours of an atom, r, the d-state radius of the free
atom obtained from [21]. There, it had been calculated through fitting to the band-
widths given in [22].

The coupling between oceupied d-states and empty plane wave states and the
coupling between empty d-states and occupied plane-wave states gives rise to a
hybridization shift,

"] s .
Ey = — (30.9) 2 1= 72 {415) ® e —10) [1 ¢ m] Q-s; (15)

L k| A d® |Gk A d))?
3B = Z ALl o -z, x AN
" d;m-.%'m Ey — Ey { d)lklr.h Ey — Ey

. (16)

We go along with the argumentation used by Wills and Harrison [15], but on account
of our modified assumptions we achieve a different result for the energy share E,
defining the shift of the d-band centre,

B vl (4o .
— A7 i - s
E, = (1140)n — & ( 3) (¢ — bi2) 2 an
This energy portion expresses the non-orthogonality of d-like states. kg is defined by
3 1/3 3
by — 5t (%) and 0, — 4'";’“. (18)

The free-electron-like states are dealt with by means of the psendopotential method
[14], with r, being the Ashcroft empty-core radius and r, the atomiec radius of [15].
The energy portion of the s-electrons is

Ziaky | 2

Fo = _LatTky
e (1822)'® ' 3z

. .
3 W 3 g, B0 (10)
7 4

10

Now, we convert the terms on the right-hand side of (19) in accordance with our as-
sumptions. The first term iz the mean kinetic energy of a uniform electron gas, It is

ft |\
g, — (2. Z = 5% -2
E, = (2.210) 5 ( 3) (@ + b)5i3 (20)
The second term is the exchange energy and looks as follows:
2 M
By — _(0.916}‘; (4;) (@ + by Q-3 (21)
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The Madelung energy is defined by the third term, witha — 1.8 being consistently as-
sumed for all transition metals. It is
&* (4::

1/3
B = -G ?) (@ + bR Q-1 22)

Since the true potential in the Schridinger equation had been replaced by the pseudo-
potential, & correction to the Madelung energy is required, The fourth term thus ereat-
ed looks as follows:

E, = 2me¥ri(a + b2 -1, (23)
From (15), (17), and (20} to (23), the total energy per ion is obtained,

E =cylm - b2)53 Q=28 — g  bLOYH Q=15 — gl - BL)E Q-1 L

s — bl
4 ela + bINE Q1 — ghlc — bAD) [1 ¢ T Q] -5 L g (o bid) Q-8
(24)
with
LEE S AR
¢ = (2.210) 2 (?) "
et fdm\18
cg = (0.916) 3 (?] ’
o® (4:":)1'3
=_al—] ,
2 3
(25)
oy = 2mery
B2 rd [4m\50
= yz = 4 ™
5= (30.9) n o K5 (3) ,
_ S |8
e = (11.40) naﬁ(?)

The equation of state — solved for static pressure — obtained from this is

= —¢ %b(aﬂ-l + B8 g ﬁ (@Q 4 b 4 e % baQt 4 bys —

. c,% (@21 4 B £ Zb(a + 5O) (6,215 — 0,2 1) —

—(a + by (c, _; Q- _ c,sz-=) -

_ e bRYE gy 2 ETEL
65[1 o J(gcﬂ —3—31.!? )—-_~

+ e 11T} blc — bgd) 2505 4 ¢, (% e Q115 g bQ—ﬂf&) . (26)
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If conversion into the Hugoniot pressure py is necessary, we use
Q £2) (8, -1
Pu= {P(Q} +?—(ﬁj- [E, — E{Q}]} [1 — 3"-{-2—1- (!.; — 1)’ . (27)

To caleulate the volume dependence of the bulk modulus B, the following formula,
following from (26}, is used:

B =, 2aQ (@1 b0 —b{af 1 4 b)—1] —c, L a1 [(af2 1 + B)US—

— Blaf2 1 4 b)) — DB, 038 | Lo abe, 21 4 g, 248

+ 0%, 0272 - 3 ooy 5% — & bRe 0228 —

— 55 (10 — ¢ + bL2) (4cf2—85 — bLI=503) 4 2B o (Q-11/3 _ 30 po (1—8/3
(28)
In semi-empirical theories of the cohesive properties, the initial pressure derivative
of the bulk modulus B, frequently serves as an input parameter. It ean be experimen-
tally determined, but only within wide error limits, or it is created there only by fitting

the theoretical curves to the measured values. According to the theory presented here,
B, can be advantageously theoretically calculated,

1 aB
5~ gy (-9 @)M,’ )
with
6B _ 10 o . 213 1 py-uaf2 -1
—.Q@ 513“9"[{“914‘53' 4 (a2 L b) Ea.Q — b+

_,r% ab(a21 + b)~400 .Q'l]

c._;%aﬂ'l [(a..Q'l 4+ b)LE - (g2t 4 B) 2 (—; afd™t - b)+

.

-;h% ab(aQt 4 b)—5s Q'l} +
+;—7 cy(BBR2%3 - ab Q13 — 4a2Q-4%) + 40,02 4

1 1
+ 6 (bc!)“"l“‘ - bﬂ-ﬂ—%-'*) ~ oy (10 — ¢ +b2) X

1
X (3—.3 c3-8% — 5? m—wﬁ) + ey 5 (06862113 — 32050403,

(30)

A considerable difficulty in the numerical caleulation of E(z), p(z), Blz), B, (with
x = f2/f),) stems from the fact that, because of (14), two unknown parameters are
still contained in the constants @, b, and ¢, namely Z] and Z¥, They are to be defined
by the following two conditions: First, the theoretical B(£2,) must equal the experi-
mental bulk modulus By . at vanishing pressure. Secondly, with 2 = ,, the pressure
p should vanish exactly.

The model described up to this point is designated MB. Due to the just mentioned
procedure for the determination of Z{ and ZY, a very long computation time is required.
Although the results are much better than those of a modified Wills-Harrison model
(WH in [23]), they are just of medium quality as concerns the coineidence of the theo-
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retical with the observed pressures. This becomes obvious in a comparison of the
dash-dotted MB curves in Fig. 1 and 2 with the experimental points. Therefore, but
above all, because of the time-consuming computational procedure, the model has
been simplified and modified : We neglect the redistribution of electrons, i.e., we take
b = 0 and introduce two constants b, and ¢,, which still have to be specified. In these
cirecumstances, (15), {17), and (20} to (23) yield the following total energy per ion:

B o= Q-2 — Q10 4 k0 — bk, Q50 L g ke 20 (31
with
k= 10} zm (43’) .

k,;:— [(0.916) Z4% 4 aZ?) ( ) “,

ky = 2merPZ% {32)

Z B [dam\Bis
3‘¢4=Zd(1——d) {30.9) n ﬁﬁ(?) ,

a8
by = Zng(11.40) ;z‘; (“) )

The exchange term and the Madelung term have been combined here into the second
term on the right-hand side of {31). The equation of state is

P=5kQ W - RO R0 - 5 bk, Q5 4 5 epky Q118 (33)
The volume dependence of the bulk modulus is calculated from
B =12}0Q-58 _ 4p,0-43 | 9k 0% _ 0hf Q-85 { e Q15 (34)

The initial pressure derivative of the bulk modulus is determined by means of (20),
where, however,

50
= —8f3 __ = 413 2 _ -813 4
QH_Q 2,?3:.(2 J’c.Q + 4k, 02 bkﬂ
968
- —11/8
b g enks Q- (35)

applies. One obtains one possible determination of b, and e, by demanding that for
£ = 12, the pressure is really exactly vanishing and that for 2 = £, the theoretical
bulk modulus exactly coincides with the experimental bulk modulus. The model thus
established is designated MA. It is applicable to materials with full d-shells, i.e. to
Z3 = 10. If no additions have to be made to the enumerated energy portions, we
take b, = ¢, = 1. The model WH thus established is applicable to Z; = 2. The transi-
tion between these two extreme models is assumed to take place in a linear way, i.e.

by = Zg'((C1Zg — Co) bya + (O — C4Zy) byu] . (386)

An enalogous formule applies to ¢, with € to €, being determined by the boundary
conditions. From this the two factors are derived as follows:

by = (42,)71 [(BZ4 — 10) bya + 10 — Z4], (37)
= (4271 [(5Z4 — 10) ey + 10 — Z,]. (38)
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Model C (abbreviated MC) is defined by (31), (37), and (38). In the following, the
usefulness of the described theory for the approximation and extrapolation of
experimental data is shown,

3. Comparison of the Theoretical Data with Experimental Resulis

The theoretical predictions of the models ME and MC will now be verified with the
help of the measuring data for various physical parameters. Tahble 1 contains the input
parameters used. The first column gives the d-state metal examined. The next columns
contain the radius r, of the atomic volume, the psendopotential core radius r,, and the
d-state radius r,, which have already been mentioned in the previous section. The
fifth column contains the nearest-neighbour separation d, the sixth one gives By o, the
experimental isothermal bulk modulus at vanishing pressure. These two parameters
are taken from [24]. The last three columns contain the coordination number » accord-
ing to [25, 26], the number of s-electrons Z,, and the number of electrons in the d-band
Z, according to [15]. For MB, only the sum of Z, and Z; is used. In Fig. 1 and 2, iso-
thermal and Hugoniot data for silver are compared with MB (dash-dotted curve) and
MC (full eurve). Although MB constitutes a signifieant improvement over WH, the
pressure values still are clearly too low, MC is already a good approximation, but here
the pressures are still slightly underestimated, too. Since the computational expendi-

Table 1
List of input parameters for MB and MC

element Te rq d Bo,ex " Z, Za
(10710 m) (10710 m}) {10710 m} {10-10m) (GPa)

Se 1.81 0.95 1.24 325 43.5 12

1.5 1.5
Ti 1.61 0.91 1.08 2.89 105.1 12 1.5 2.5
v 1.49 0.87 0.98 2.62 161.9 8 15 35
Cr 1.42 0,82 0,90 2.50 190.1 8 1.5 45
Mn 1.43 0.78 0.86 2.24 59.6 8 15 55
Fe 141 051 0.80 2.48 168.3 8 15 65
Co 1.39 0.62 0.76 2,50 191.4 12 1.6 7.5
Ni 1.38 0.53 0,71 2,40 186.0 12 1.5 85
Cu 1.41 .46 0.87 2.56 137.0 12 1.5 95
Y 1.99 1.09 1.58 3.55 36.6 12 1.5 1.5
Zr 1.77 1.06 1.41 3.17 83.3 12 1.5 25
Nhb 1.62 1.01 1.28 2.86 170.2 8 1.5 3.5
Mo 1.55 0.95 1.20 2.7 272.5 8 1.5 45
Te 1.50 0.84 1.11 271 (207.0) 12 1.5 &5
Ru 1.48 0.72 1.05 265 3208 12 L3 6.5
Rh 1.49 0.62 0.99 2,69 270.4 12 1.5 7.5
Pd 1.52 0.52 0.94 2.75 180.8 12 1.5 8.5
Ag L1549 0.45 0.89 2.80 100.7 12 1.6 9.5
Lu 1.92 1.06 1.58 3.43 41.1 12 1.5 L5
Hf 1.75 1.05 1.44 3.13 109.0 12 1.5 2.5
Ta 1.62 1.02 1.34 2.86 200.0 8 1.5 35
w 1.56 0.94 1.27 2,74 323.2 8 1.5 4.5
Ee 1.52 0.79 1.20 2.74 372.0 12 1.5 5.5
Os 1.49 0.66 1.13 2.68 (418.0) 12 1.5 6.5
Ir 1.50 0.51 108 271 355.0 12 1.5 7.5
Pt 1.53 0.33 1.04 2.7 278.3 12 1.5 85
An 1.59 0.40 101 2,88 173.2 12 2 9
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Fig. 1. Pressure versus isothermal volume ratio o for silver. Solid circles designate the exper-
imental values as reported by Mao et al. [27], the theoretical values according to ME are indicated
by a dash-dotted line, and those obtained according to MC by a solid line

Fig. 2. Hugoniot pressure versus relative volume for silver. The measured values are marked o
[28], + [29], = [30], and 0 [31]. Theory MB is dash-dotted, theory MC continucus

ture for MB is extremely high, only MC has been computed for other materials. In
Fig. 3 and 4, the predictions of MC are compared with the results of static compression
experiments in a p—x plot for gold, x-iron, and e-iron. In all cases, excellent agreement
isachieved. The b.c.e.-h.c.p. phase transition for iron is allowed for by 0.949x(Fe(z)) =
= x(Feic)). Fig. 5 has been based on other experimental data. The approximation of
the experimental data by MC (full curve) is very good for gold, palladium, melybdenum,

s (AT T

k- k
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Fig. 3. Static pressure versus relative volume for gold.
Measuring points according to Heinz and Jeanloz [T]. As
in the fellowing diagrams, the solid line represents MC
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Fig. 4. Relative volume versus pressure for the b.c.c. and h.c.p. phases of iron. © are room-temper-
ature static compression data for iron, with neon serving as a pressure-transmitting medium;
& the same, with argon serving as medium. The afore-mentioned data have heen taken from
Jephcoat et al. [32], A from Mao and Bell [33], + from Brown and McQueen [34]

copper, nickel, a-iron, and e-iron. In the case of vanadium, this is only so for high com-
pressions, whereas for medium compressions and for niobium the theoretical curves of
MC are too low. The estimations made according to WH are much too low in all cases,
For iron, it has been shown that the bulk modulus, too, is very well approximated as
a function of the relative volume by MC. The initial pressure derivative B, of the bulk
modulus can be determined experimentally only with moderate accuracy. These values
have been connected by the dotted line in Fig. 6. They have chiefly been taken from
Steinberg [46], for scandium, chromium, cobalt, yttrium, ruthenium, rhodium, iri-
dium, and platinum also from [47], and for manganese and osminm from [48]. The
value for lutetiom has been estimated. The values caleulated according to WH have
been connected by a dashed line, and the values calculated by means of MC by a con-
tinuous line. It turns out that the prediction possible with the help of MC is obviously
considerably better. In Fig. 7, an analogous comparison for the zero-pressure bulk
modulus By is made. The signs have the same meaning as in Fig. 5. Here, too, MC is
a practicable approximation. It should be noted here that also the prediction of Hugo-
niot pressures by MC is very good for all transition metals except scandium and tita-
nium. Due to lack of space, however, it is not possible to show the comparisons in this

Ppaper.

4. Conclusions

Nowadays, it is possible to caleulate the cohesive properties of d-state metals from the
density functional formalism. However, there is a great deal of computation involved,
and for various parameters only the tendency of the distribution in the Periodic
Table is correctly inditaced. Since it has been found that many details of the band
structure are insignificant for cohesion, it has been possible to utilize a simplified
theory with a separation of the free-electron states and local, non-overlapping d-states
and coupling. From this theory, two models have been newly developed, a model
MB with s — d electronic transfer and a model MC in which for metals with full d-shells
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Fig. 5. Comparison of the equations of state MC (full curve) and modified Wills-Harrison (WH,
dashed eurve) with experimental data. For experimental values see the Table

Legend of symbols of Fig. 5

metal symbol reference

Au . room isotherm [35]
* Hugoniot data [35]
o static data [36]

Pd, Mo . 293 K isothermal data [27]
0 static data [37]

Nb o] static data [36, 38]
. room isotherm [39]
P Hugoniot data [39]

Cu u zero isotherm [40]
L] room isotherm [35]
kS

Hugoniot data [35]
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Fig. 6. The initial pressure derivative of the bulk modulus.The full curve links the values predicted
by means of MC, the dashed curve the theoretical values aceording to WH. The experimental
values B e are linked by a dotted line

Fig. 7. The bulk modulus at vanishing pressure. The solid curve links the theoretical predictions
aceording to MC, the dashed curve those of WH. The experimental values By .x are linked by
dotted linea

at zero pressure the bulk modulus and the zero-pressure volume have been fitted to
the measured values, which are rather precisely kmown. MC gives very good predictions
for all d-state metals, with the exeeption of three, and for these three the tendency
of the predictions is correct with respect to the total energy, the static pressure,
the Hugoniot pressure, and the bulk medulus, all of these parameters having been
examined as functions of the relative volume. The numerical coincidence with experi-
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mental results is so good that the predictions can also be used in practical high-pressure
research, for investigations of the cores of the planets, and in astrophysics. As compared
with semi-empirical methods, it is particularly convenient that the initial pressure
derivative of the bulk modulus, which empirically is known only with a great degree
of unecertainty, is not employed as an input parameter in MB and MC, but is theoreti-
cally ealeulated instead and yields good agreement in the Periodic-Table systematics
of the measured valuea By ..
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