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A theory linking the nearly-free-electron theory to d-band broadening and hybridization effects
is further developed in such a way that a model, called MA, for the energy, the pressure p, the
bulk modulus and its derivatives with respect to pressure as a function of the relative volume «
in created. The theoretieal values of MA are compared with all known experimental data for tran-
gition metals. For predictions of the relative volume as a function of pressure as well as for the
predictions of the first derivative of the bulk modulus with respect to pressure at zero pressure
significant improvements are obtained. The approximation of measured values in the p-z plot is
very good for most transition metals, in particular for iron, too, and good for the other metals.

Eine Theorie, die die Theorie der fast freien Elektronen mit der der d-Bandspreizung und der
Hyhridisation verbindet, wird so weiterentwickelt, daB ein Modell, genannt MA, fir die Energle,
den Druck p, den Kompressionsmodul und seine Druckableitungen als Funktion des relativen
Volumens = entateht. Die theoretischen Werte von MA werden mit allen bekannten Melidaten von
Ubergangsmetallen verglichen. Dabei ergeben sich sowohl fiir die Voraussagen des relativen
Volumens als Funktion des Druckes als auch fiir die der ersten Druckableitung des Kompressions-
moduls bei Nulldruck erhebliche Verbesserungen. Fiir die meisten Ubergangametalle werden die
Mefwerte im p-2-Diagramm sehr gut approximiert. Das gilt insbesondere fiir Eisen. Auch fir die
anderen stellt MA eine gute Niherung dar.

1. Introduction

In principle, it is possible to compute the elastic and bonding properties of transition
metals from a relativistio generalization of the Schridinger equation, Since a solution
of the Schridinger equation is possible only for very simple cases, a number of approxi-
mation methods have been developed. However, for the zero-pressure hulk modulus,
its first derivative with respect to pressure and for the equation of state, these methods
vield theoretical values constituting a rather poor approximation of measured values.
Therefore, empirical and semi-empirical equations of state are used to the present
day in applied high-pressure research, in geophysies and astrophysics. It is the objec-
tive of this paper to modify the afore-mentioned methods such as to make the dengity
of transition metals so well predictable as a function of pressure that the user may
renounce empirical methods. Wigner and Seitz [1] studied the bonding in monovalent
sodium. Studies on polyvalent metals were published only much later. The reason for
this was, first, the necessity to self-consistently compute the potential in the Schrd-
dinger equation not only in dependence on the ion core, but also on the Coulomb
field of the valence electrons, The existence of spin follows from the relativistic quan-
tum mechanics, Therefore, secondly, exchange and correlation terms had to he intro-
duced. This was done by the local density functional formalism by Kohn et al
[2, 3]. Moruzzi et al. [4, 5] applied it to 3d and 4d metals. Using self-consistent

1) Burgweg 11, DDR-6800 Jena, GDR.
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energy band calculations, they were able to compute very well the Wigner-Seitz radius,
the cohesive energy, and the zero-pressure bulk modulus of the 4d transition metals.

Andersen [6, 7], basing his studies on the local density functional formalism, found
the atomic sphere approximation and the related muffin-tin orbital theory. From the
linear superposition of the muffin-tin orbitals, a solution of the Schrédinger equation
is obtained. Pettifor [8, 9] used the atomic sphere approximation for calenlating the
band structure of the transition metals. Many details of this structure proved to be
immaterial for the ealculation of the bonding forces. The pseudopotential theory
[10, 117 shows a possibility for reaching a separation between free-electron-like and
d-like states. Harrison and Froyen [12] combined the pseudopotential theory with the
muffin-tin orbital theory. As a result, in a similar way as Pettifor [8], they achieved a
significant simplification of the theory of d-band strueture of transition metals.
Harrison and Wills, basing their work on this, developed a theory of the binding
energy of simple metals [13] and of transition metals [14]. These theories are very
promising. Yet, the agreement between the theoretical and experimental values is not
sufficient for further practical application. Therefore, we shall further develop
this theory, laying particular emphagis on the comparison with experimental values.
For a further familiarization with thig field, the following three review articles are
recommended: [15, 16, 17).

2. Theory

For the purpose of simplification, we neglect the redistribution of electrons to the
two external, not fully filled shells. The number Z of valence electrons per ion results
from the sum of free s electrons and of the d electrons,

Z=2Z 4 Z,. (1
We treat the outer electron shell as a uniform electron gas under the influence of an

empty-core pseudopotential of radius 7, (see [16]). The energy per ion for the free-
electron-like states is

3 k., 3 Zlotxky, 2
- 2 0" goe _ = F L, T 7 23_'
B = q5 %0 K0 — g Bty — ((guz i g 2ok @
For the radius r, of the atomic volume £, we have
ry = K (9aZ,/4)% and @, = dardf3. (3)
Thus, from (2} we get
Efu = 1-190—2;'3 - kﬂgo_l'ra + ka‘QETJ (4)
with
ﬁz 4_,:; 203
—_ -
b= 2210 1z ( 3) , (5)
5 ys
by = 5 10916 285 + a2l (%) , (6)
ky = 2metriZ% . 0]

The first term of (2) defines the mean kinetic energy of free electrons, the second one
the exchange energy, the third term is the Madelung energy, the assnmption we are
making from now on being x = 1.8. The fourth summand is a correction term for the
Madelung energy which is introduced on account of the empty-core pseudopotential.
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¢ is the electron charge, m the electron mass, and 4 Planck’s quantum of action divided
by 2.

When dealing with the coupling which broadens the d states into bands, we eal-
culate the energy Fy according to Friedel[18], the bandwidth W3 according to Harrison
and coworkera [12, 14, 16], introducing, however, a first (differing) hypothesia.

Eh o %zd[\l —_ del(}) “”ds {8)
12 |2 1 "

Wa= || (£ X Vbiry))® and Vp= (% X Via(r)] . ©)
i\" i f==i 5 "

(') 41k (ki 4|d)

Vorr = } 10
adm Zk: 0, — By (10}

is an expression for the coupling between the local nonoverlapping d states and the
orthogonalized plane waves. A is a hybridization term in the Hamiltonian, The plane
wave can be expressed as follows (Schiff [19]):

lfe) = Q12 X (20 - 1) #*s(kr) [4ec/(21 + 1)V YDy By) o
i

7, is the position vector. The atomic d states are expressed by |d) = Ry(r) Y26, D,),
where H, is the radial d-state wave function. It is known [12] that

. Wi
Voplr) = %; [inda0 + 2nfas + 2n5ae)/5112 (1L}
with
45 30 15
Tddo = — — o = ——, Madz = — 5. (12)

r is the interionic distance, N, the number of atoms, = the coordination number, 4 the
nearest-neighbor separation. We now introduce the hypothesis that the ratio of the
nearest-neighbor separation to the atomic radins remains a constant K also in the
case of compression of the crystal. Moreover, we use only the interaction exerted by
the nearest neighbors, thus obtaining

zd ! F L r& 4oz \BI8

- [— 2= _ =5 /3%

Ey= —2, (1 10) Bo.g)mr 1 ( 3) 0; (13)
becanse

80.9 = (12)'2 [(nia0 + 27ham + 2ndaz)/B]12 .
We define a constant k,,
Ey= —k, 05008, (14)

g is the d-state radivs applicable to the free atom. We take the ry from [12] which
are adapted to the bandwidths given by Andersen and Jepsen [20]. For r, and r,, we
take the values from [14], with the core-radius r, being so adapted that the correct
atomic volume at zero pressure is obtained. In addition to the afore-mentioned
energy contributions, a small contribution ¥, is added which describes the shift in
the d-band center. The procedure in which it has been derived is found in the paper
by Wills and Harrison [14].

It is a consequence of the nenorthogonality of d-like states. In our hypothesis, it is
ht rg (m 8

13
m K° ) Q5% = kQ5 (15)

B, = Zn{11.40) e
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Magnetic effects, making a contribution above all to the energy of the 3d metals [21,
22], as well as spin-orbit coupling are not direetly taken into account by us. Instead,
we use the following expression for the energy

E = k225 — Q=18 ok Q70 — bk Q50 | ek Q83 (16)
From this, we obtain the new equation of state

5
=k 2..;;—*!3 — kg @Y e 27 — bk o Q7 ey 2 Q-1s . (17)

From the pressure p, the bulk modulus B is ealeulated

4
B = ki-g-}ﬂ""** g @+ k20—
bk @ ek D 0 a8

One point each of the curve is fixed in (17) and (18): We postulate that for the atomic
volurme £ = (% at vanishing pressure p = 0 really follows from (17) and that the

Table 1l
List of input parameters of the theoretical models

element By ex Ta o Ta d n Z, Za
(100 MPs)  (10720m) (1070 m) (10" ¥ m) (1079 m)

Be 435 1.81 0.95 1.24 3.25 12 L3 1.5
Ti 1051 1.61 0.91 1.08 2.89 12 1.5 2.5
v 1619 1.49 0.87 0,88 2.62 8 1.5 3.0
Cr 1901 1.42 0.82 0,80 2.50 8 1.5 4.5
Mn H96 1.43 .78 0.86 2.24 8 L5 5.5
Fe 1683 1.41 0.71 0.80 2,48 8 1.5 6.3
Co 1814 1.39 0.62 0.76 2.50 12 1.5 7.5
Ni 1860 1.38 0.53 0.71 249 12 1.5 8.5
Cun 1370 1.41 .46 067 2.50 12 1.5 8.5
Y d66 1.99 103 1.58 3.65 12 1.5 1.5
Zr B33 177 1.06 1.41 3.17 12 1.5 2.5
Kb 1702 1.62 1.01 1.28 2.86 8 1.5 3.9
Mo 2725 1.55 0.95 1.20 2.72 B 1.5 4.5
Te (2870) L.50 0.84 L11 2.7 12 L5 5.5
Ru 3208 1.48 0.72 1.06 2,65 12 1.5 6.5
Eh 2704 149 0.62 0.99 2.69 12 1.5 7.5
Pd 1808 1.52 0.562 0.94 295 12 1.5 8.5
Ag 1007 .59 0.45 0.89 2.89 12 1.5 9.5
Lu 411 1.92 1.06 1.58 3.43 12 1.5 1.5
Hf 1090 L.7% 105 144 3.13 12 1.5 2.5
Ta 2000 1.62 1.02 134 2,86 8 1.5 3.5
w 3232 1.56 0.94 1.27 2,74 8 1.5 4.5
Re 3720 1.62 0.79 1.20 2.74 12 1.5 5.5
Qs (4180) L.49 0.66 1.13 2.68 12 1.5 6.5
Ir 3550 1.50 0.51 108 271 12 1.5 1.5
Pt 2783 L.53 0.33 1.04 2.77 12 1.5 55
Au 1732 1.59 0.40 101 2.88 12 2 9
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experimental zero-pressure hulk modulus By . equalsthe theoretical zero-pressure
bulk modulus B,. From these two assumptions, b and ¢ have been calculated.
From

oB 50 16
_0S2 el o T 17 O —43 _ -2 _
Qﬁ;) k"2'TQ @279 Fokyd 2
320 068
— — - B3 N —11f3
bk, 77 0o L ek 37 2 (19}

the pressure derivative of the bulk modulus at vanishing pressure is formed,

1 o8
B, = 2 . 20
t B(Qu:] ( 89]9_00 =0

The model proposed here for the behavior of transition metals under high pressure,
i.e., (16) to (20) will be hereafter called model A (abbreviated MA). If we assume that
b and ¢ equal unity, we obtain a modified Wills-Harrison model {abbreviated WH).

3. Comparison of the Theory with Experimental Results

By comparing the curves p(£2) and B(£2) with measured values, the theory can be
tested for its applicahbility to transition metals at £ < (2. Another test can be per-
formed by comparing B, with observed data.

Table 1 shows the well known input parameters. There are eight for each of the
metals, seven of which having a microphysical nature. The only macroscopie input
parameter is By .y, the experimental isothermal bulk modulus at vanishing pressure
according to [23], which parameter is given in the second column. The following
columns eontain the radivs of the atomic volume 1, and the pseudopotential core radius
rer both taken from [14], the d-state radius ry according to [12], the nearest neighbor
separation d according to [23], » the number of nearest neighbors in equilibrium
according to [24, 25], Z, the number of electrons per ion heing in the free-electron-like
states, and Z, which is the number of electrons in the d-band according to [14].

In Fig.1to 9, the theoretical curves obtained with the models MA (full curve)
and WH (dashed curve) are compared with the measured points for all transition
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Fig. 1 Fig. 2

Fig. 1. Gold. Comparison of equations of the state MA (full curve) and WH (dashed) with experi-
mental data: O static data [27], @ room isotherm [28] calculated from Hugoniot data (crosaes)
Fig. 2. Silver, For text, see Fig. 1
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Fig. 3. Palladium. For text, sec Fig. 4

Fig. 4. Molybdenum. Comparison of the equations of state MA and WH with measured data.
The experimental values are taken from Mao et al. [20] (203 K isothermal data, @) and Li Chung
Ming and Manghnani [30] (1)

Fig. 5. Niobinm. Comparison of the equations of state MA and WH with measured data: o
static data [31]; Hugoniot data and room isotherms calculated from them have been taken from
[32]

metals. For this purpose, the pressure p is plotted versus the relative volume x =
= £2/Q,. Crosses denote Hugoniot data, insignificant for the comparison, from which
room isotherms, in some eases also zero isotherms, have heen calculated in literature.
The knowledge we have of the compression comes from shock-wave data, X-ray
investigations, and volumetric measurements. The graphic representation of the
compared experimental results in Fig. 1, 2, 5, 6, 7, 8a, and 9 is based on that used by

"R —
& [

T ]

o

| R * |

) j

.
o
T

.

&

Fig. & Fig. 7

Fig. 6. Copper. Comparison of the equations of state MA and WH with experimental data:
M zero isotherm [33]. For further text, see Fig. 1

Fig. 7. Nickel. Comparison of the equations of state MA and WH with experimental data:
Hugoniot values, @ jsotherms calenlated from them according to [34], © static data according
to [27]
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Fig. 8. Iron. Comparison of the equations of state MA and WH with experimental data. The
curves are caleulated for h.e.p. iron. The relative volume shown s E{O“J."’E' with QE,’J being the zero-
pressure density for b.c.c. iron. The experimental data in a) have been taken from the following
references: @ isotherms from Hugoniot data [36], & isotherms from [34, 37], O X-ray data from
387, » shock-wave data from [38], + smoothed Hugoniot data from [36]. The representation of
300 K. isothermal experimental values in b) has been taken from [40], one value has been cor-
rected according to the original work [35)

Ullmann and Pankov [26] who have compiled the numerical values from literature.

Since we have p@/pl) = %: 0.9414 for the ratio of the zero-pressure densities

of b.c.c. iron to h.c.p. iron, the p—x curve for &-Fe begins only at z = 0.9414. When
we look at Fig. 1 to 9, we see that MA yields a significant improvement in the approxi-
mation of the experimental data over WH. In particular, the excellent approximation
obtained for iron shows good promise for an application in the study of the cores of the
terrestrial planets. (Since the mantles of these planets are composed ina complex man-
ner of silicates, oxides, and other materials, simpler equations of state will still have
to be used for them. Tt is advisable to employ the model MZ [41], developed from
[42] for this purpose.)

Table 2 shows a few further comparisons between the model WH and the new
model MA, respectively, and observational results. In the first column, the element is

Fig. 9. Vanadium. Comparison of the equations of state
MA and WH with experimental data: x and @ Hugo-
niot and room isotherm values caleulated from them

0 i I h according to [34], o static data from [31]
ar 28 74 0




Draft

Fig. 10. The full line links the first derivatives of the bulk
modulus with respect to pressure at vanishing pressure as
- predicted by MA, the dashed line the corresponding valnes
| as predicted by WH. The dotted line links the experimental
values By px. An interesting paper on the systematics shown
here has been written by Vohra et gl. [46]
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given. Unless something else is specified, it s in the
a-phase. The second column shows by how many times
the experimental zero-pressure bulk modulus is grea-
ter than the theoretical one according to WH. For
. - MA, this ratio equals unity for all transition metals
gL I B - according to the construction of the model and, thus,
lw #F T oW Re s IFMA e jdeal. The experimentalinitial first derivative of the

bulk modulus with respect to pressure, called By u, is
given in the third column, The corresponding theoretical values By in the next two
columns prove that MA gives a somewhat better approximation of the measured
values than WH. (see also Fig. 10), It is a large advantage of MA that, in contrast to
the usual equations of state, it does not require By ¢ 88 an input parameter, since
this quantity is only insufficiently known for most materials. Unless specified other-
wise, most B, . values have been taken from Steinberg [43]. As Fig. 1 to 9 have shown
that MA vields a realistic equation of state, the sixth column of Tahle 2 gives a view
as to how the pressure values in the Periodic Table that arenecessary for compress-
ing the substance to # = 0,76 change.

4. Conclusions

A combination [12, 14] of the muffin-tin orbital theory and the transition-metal pseu-
dopotential theory was used for formulating the d-band structure of transition metals.
This permiited to write the total energy as a sum of the kinetic energy of the free
electrons, the exchange energy, a Madeling term, and its pseudopotential correction
as well as two terms representing band broadening and hybridization effects. Three
assumptions were introduced:

(i) The nearest-neighbor separation to atomic radius ratio is constant.
(ii} At zero-pressure volume, the pressure has to vanish exactly.

(iii) At zero-pressure volume, the experimental zero-pressure bulk modulus must
be exactly obtained.
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Tahle 2

Bupplementation of the comparison of the madels MA and WH through experimental
data. For an explanation, see text

element Bo,ex/By  Biex B, E, p (100 MPa) b e
defined defined defined atx = 0.75,
by WH by WH by MA  defined by MA

He 2,427 2.0%) 1.432 5.111 269.92 1.846 4.190
Ti 6,080 4,87 0814 5.736 707.07 2.071 4.544
\i 6.173 4.26 0.609 5.813 1113.60 2.217 5.530
Cr 5.513 4.59%) 0.709 5.916 1308.37 2,148 5.041
Mn —5.526 5.0%*) 3.502 4.724 355.79 0,657 0.632
Fo 3348 5.29 1.137 . GO 1112.61 2.274 4.962
Fe(e) G57.93

Co 2.764 4.26%) 1.569 5.5611 1246.95 2.409 4.118
Ni 2175 5.26 1.876 5311 1178.45 3.1560 4.393
Cn 1.615 5.48 2.411 4.87% R16.82 5.573 4.073
Y 2,143 2.0%) 2,182 5.354 234.33 1.5687 2,399
Zr 2.200 4.11 2,340 5.508 568,82 1.500 2.240
Nb 3.326 4.06 1.628 6.093 1194.34 14975 3.105
Mo 3.507 4.50 1.612 6.152 1822.75 2,197 3.203
Te 2,480 unknown 2,232 6.070 2073.75 2.030 2.634
Ru 2.312 G.61*) 2,402 5.878 221219 2.113 2.536
Rh 2.262 4.50%) 2314 5.822 1827.48 2.461 2.800
Pd 1.716 5.42 2826 5.495 117102 25500 2.415
Ag 1.369 6.12 3.313 4.920 602.45 3.178 1.951
Lu 1.784 3.2%%w) 2.762 5.372 263.95 1.396 1881
Hf 2.314 3.85 2300 5.062 752,75 1.870 2.269
Ta 2.742 379 1.994 6.140 1410.41 1.954 2.773
w 3.070 4.33 1.901 6.169 2282.98 2.1856 2.962
Re 2,149 5.41 2,675 6.085 2588.37 1.986 2.286
Os 2.031 3.4%%) 2,727 6.026 2896.00 2.207 2,367
Ir 1.948 4.83%) 2.790 5.886 241542 2.402 2.350
Pt 1.763 S.18%) 2,946 5.705 1849.06 2.906 2,318
Aun 1.572 6.2 3.331 4.865 1027.17 1.428 1.498

*) According to [44], **) according to [45], ***) estimated.

The resulting model was tested using experimental compression data from nine
transition metals, a significant numerical improvement of prediction being obtained.
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