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Abstract. A new theory is developed for metals which permits calculation of the free energy,
pressure, and bulk modulus and its pressure derivatives as a function of the relative volume. With
free energy, not only attractive and repulsive lattice energy, but also the Fermi energy, exchange,
and correlation energies of the electrons are accounted for. The theory exhibits a certain analogy
to the statistical theories. The overestimation of electron density near the nucleus has been
overcome by a quantum-mechanical theory by Goodisman, the result of which is used in the present

. theory. The computational expenditure, however, is reasonable also for the purpose of practical
high-pressure research. Five well-known quantities serve as input parameters: atomic change,
valency, atomic volume, bulk modulus and its first derivative with respect to pressure for vanishing
pressure. The curves calculated from the new ‘MY’ equation of state are compared with high-
compression data of twenty metals. For seventeen metals good or very good agreement is
obtained, for three, a reasonable agreement is obtained.

1 Introduction

In experimental high-pressure physics and in geophysics it is common to use equations
of state which are either completely empirical or are based on assumptions which do
not permit any large extrapolation beyond the pressure range that is experimentally
feasible. One case in point here is the equation developed by Prieto and Renero
(1982). It is mainly based on the empirical linear relationship between shock velocity
and particle velocity. This approach is completely legitimate. However, if equations
of state are to be applied also to pressure ranges where there is no certainty as to the
validity of the previously mentioned relation, the physical foundation of the new
equation of state should reach to a greater depth. In this case, the main difficulty is
to confine the computational expenditure to reasonable proportions: strictly
speaking, we would have to solve the Schrddinger equation for a multiparticle
problem. This, as is well known, is not possible. For pressures above 100 Mbar,
occurring, for example, in stars, the Thomas-Fermi (TF) theory can be used, all the
more so as it can be shown (Lieb 1981) that results of the TF theory in the large-
nuclear-charge limit merge with those of quantum theory. The physical applicability
of the statistical theories for atoms and molecules extends far beyond our problem.
The TF energy functional is

Erp=- f WOV (x)dx"+ D', ) + U’+§vau’/a(x')dx’, &

where u is the electron density, x' the location, dx' the volume differential, ¥V a
slowly varying potential in which the electrons are moving; the constant Yp is given
by
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where m is the electron mass and % is Planck’s constant. The first term on the right-
hand side of equation (1) is the potential energy of the electrons in the field generated
by the atomic nuclei. The second term, D'(u, n), is the energy of the classical
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Coulomb interaction between electrons; U’ is the repulsive electrostatic energy of the
nuclei. The fourth term (Fermi term) expresses the kinetic energy of the electrons.
The TF theory has now been extended and improved several times (see, for example,
March 1974). With metals, it is important to screen the nonclassical electron-
electron interactions. Therefore, the exchange energy —(0.916/r)Ry is used to

account for the mutual repulsion of electrons having the same spin. The Seitz radius
rs is the mean interelectronic spacing expressed in Bohr radii. The interpolation
formula of Wigner (1934, 1938) is used for taking the correlation energy per electron,
E .o, into account:

—0.88
Eoon BV = rE78 3)

Perrot (1979) has shown how a zero-temperature equation of state of metals can be
derived from the TF and related theories. As was to be expected, the computational
expenditure was very high. According to Perrot, the results are reliable only for very
high compressions, for example, in the case of the TF Dirac model for x < 0.02 in
lithium, x < 0.05 in beryllium and aluminium, and x << 0.1 in copper, where x is a
relative volume given by the ratio of the zero-pressure mass density to the mass
density. Consequently, we have adopted a middle-course approach which will be
described below.

2 Development of the new MY equation of state

The following considerations are based on the experience gained from statistical
theories. For the potential energy, however, a Lennard-Jones-Devonshire (LID)
potential is used. Then, the free energy @ is given by

D=, +P,+ P, + P, @)

where ®; is the interaction free energy, for which a LID potential is assumed. The
zero-point free energy, ®,, is given by
1 3N’
@ =7 D hu, Q)
i=1

the thermal free energy, ®,, by

5 2 O s gl
ta = n exXp kT 5 (6)
where v; is the frequency, N' the number of atoms, k Boltzmann’s constant, T the
temperature; P, is the free energy of the free electrons. At first, the temperature
dependence and the zero-point energy will be neglected. Hence, in the following an
isothermal equation of state will be developed. The Helmholtz free energy is given by

‘I)=”<—2:473_%%>+b<2cz/3— D1/3_ 53 )’ @)
e x s o0X Fs,0X Fsox P+ F
where

A = 1.0110, B = 1.2045, C = 2.21 Ry,

D = 0916 Ry, E = 0.88 Ry, F=18.

The relative volume x can also be expressed by x = r3/r3,, where ry o is the value of
rs at vanishing pressure. r; o is a material constant and is calculated from the expression

Ve e ‘
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where a; is the first Bohr radius for hydrogen, expressed in units of 107!° m, hence
a,; = 0.52917706; v, is the atomic volume in units of 1073 m3, which can be
found, for example, in table 1 of Goérecki (1979); w is the valency; a, b, and n in
equation (7) are also material parameters which subsequently are replaced by quantities
that are better suited for macrophysical measurements, while the quantities 4 -F
follow from theory and have identical numerical values for all metals. The constants
A and B result from the geometric arrangement of the atoms in the crystal lattice.
The numerical values specified are for fcc lattices (see Hirschfelder et al 1954), with
atoms having been taken into account up to the third shell of neighbours around a
fixed atom. We also take these numerical values for other lattices, especially since
increasing pressures probably will ultimately create the closest packing for all metals.
Values of the constants C-F have been taken from Wigner (1934). The five terms on
the right-hand side of equation (7) have the following significance: (i), (ii) repulsive
and attractive lattice terms; (iii) Fermi free energy of the electrons; (iv) exchange
energy of the electrons, which follows from Hartree-Fock calculations; (v) correlation
energy of the electrons as formulated by Wigner. Using the thermodynamic relation
p = —(0%/dx)r, where p is pressure, and the substitution y'# = ry ox/3, the
following equation results from equation (7)

0d T 3eul2 ce Bro
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Equation (9) is the temporary form of the new equation of state for metals. From
this equation the bulk modulus k is computed, where k = —xdp/dx = —ydp/dy:
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Let the bulk modulus at vanishing pressure be denoted by k,, its derivative with
respect to pressure at zero pressure by k;. Thus, ko =k, = ;and k, = 9k/0p |, = ;.
It should be noted that
oK e oK
op TR ox " (12)
For x = 1, we have y = rg,o. Moreover, from equations (9)-(12) we obtain
b = Gna, (13)

with

4 BB B S
il A)[rij Pt (rs,o+F)2:| ’

3k, = na[Gn+1)A— Gn+ )B]+ Hb, (14)
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where
- = = 2rs o+ F
H= %[SC}'S?O— 2Drs"0—Ers’0 st—o:'—F?] :
as well as
3kok; = na[(3n+1)24— (n+ 1)?Bl+1b, (15)
with

F(rg o+ F)+ (2rs o+ F)4rs o+ F
I=%[25Cr§,2o—8Dr§,lo—Ers,o LR Ah R (TR AR G )].

(rs,O + F)4
The constants k, and k; have been measured for many metals. Therefore, equations

(13)=(15) are used for eliminating the unknown material constants a, b, and n from
the equation of state (9):

a = Uko)/n, (16)

b = GU(k,), (17)
with

Ulky) = 3kol(n+ 1DA—(3n+ DB+ GHT™?, (18)
and

n = K(k,)+ [K2(k;)— M+ Nk,1%, (19)
with

J = (44-B)/9, K(ky) = 3L(k,— 2).
L = (24-B)/3J, M= (A—-B+GD/J, N = (A—B+GH)/J.

The theory presented here has been constructed in analogy to the TF and related
theories. Those corrections of the TF theory that can be directly expressed in terms
of x by our theory have already been accounted for. But the statistical theories for
atoms and molecules give only a rough approximation to the electron density because
the assumptions of the theory are no longer satisfied at very small and very large
distances from the nucleus. Von Weizsicker’s (1935) kinetic-energy correction
provided the correct behaviour of the electron density for very small and very large
distances from the nucleus. In that case, a term

SJ[(Vu‘/’)(x’)]zdx'

has to be added to the right-hand side of equation (1), with
A'h?

e 8m2m -

According to Lieb (1981), A" = 0.186 is the most favourable numerical value. This
additional theory has been modified by various authors, Hohenberg and Kohn (1964)
having taken a very systematic approach. However, these theories, too, have some
shortcomings. To overcome them and to avoid an overestimation of the electron
density near the nucleus, Goodisman (1970) connected a quantum-mechanical
electron density for the region near the nucleus to the electron densities given by the
statistical model. This extension of the theory approximates very well to various
experimental results, for example, the diamagnetic shielding and the diamagnetic
susceptibility. We take into account the final formulae of Goodisman’s theory.
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Hence it follows a factor f,, for equation (9) is given by

0.722713— 02422+ 0.43Z5/3
= 0.7689277 (20)

where Z is the nuclear charge. With y!/2 = r (x!/3, we obtain the following clear
expression for the pressure, p:

A B oc " D E
p= fo{%na (xizn/m T~ S@RT 1> +%br§‘,o[yw§ i (J)Ws__rp)z_yﬂé'}} ! (1)

The new isothermal equation of state (21) is used together with the simple equations
(8) and (13)-(20) to compute the pressure p in its dependence on the relative volume,
x, for metals. The constants A-F and a, are independent of the material and have been
taken from basic theories; the following constants have to be individually inserted
for each metal into the equations: the bulk modulus at vanishing pressure, Kk, its
derivative with respect to pressure at zero pressure, k;, the atomic volume, vy, the
valency, w, and the nuclear charge, Z. Since these material constants are known for
most metals, equation (21) can conveniently be used for practical high-pressure studies
and for planetary physics, too. Thus, it is the aim of this study to approximate, with
the aid of a physically satisfactory theory, the experimental high-pressure values and,
on account of the deeper physical penetration of the problem, to justify to a greater
extent the confidence in extrapolation beyond the pressure range covered by
measured values. An application of the results to the problem of the pressure
dependence of the melting temperature and of the geophysical core paradox
(Kennedy and Higgins 1973; Ullmann and Walzer 1980) also appears to be promising.
The present theory is essentially a compromise between theoretical physics and the
requirement of easy applicability. Incidentally, if the free energy, ®, the bulk
modulus, k, or the quantity — xdk/dx are required for future computations, these
quantities will, of course, have to be multiplied by f,.

The present theory, denoted MY, has a certain connection with the MX equation-
of-state theory (Walzer 1982). The resemblance is, however, only of a more formal
kind. The new MY theory has a quantum-statistical correction. In the MX theory
the mean interelectronic spacing 7, o is a constant. In the MY theory the quantity
75,0 is computed individually for each metal; the author used Wigner’s (1934)
original values for the constants for C-F; the quantity K was introduced in another
way. In the MX theory the quantities ko and x, serve as input; in the MY theory,
however, we use five input constants. The MY theory applies only to metals; MX
does so for all materials. The MY theory is found to approximate the experimental
values better than MX.

3 Comparison with experimental data

Frequently, new equations of state are verified by their proponents only for few
materials. Sometimes, there is every appearance that the material constants used in
the theories have been derived from the measured values themselves that had been
used for verification. In such circumstances, an excellent agreement of the measured
values with the theoretical curves is not astonishing. Here, another approach has
been chosen. For the test, all those metals were used for which the experimentally
determined relative volume x is known to sufficiently high pressures. These data
were taken from static volumetric measurements, shock-wave data, and x-ray studies.
The symbols of the measured points shown in figures, the experimental methods, and
the authors are listed in table 1. The material constants required for the calculation
of the theoretical curves stem from other authors and are shown in table 2. In this
way, the theory developed in the previous section and resulting in the new equation
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of state MY has really been tested. Since the MY equation of state is an isothermal
equation, it is not the Hugoniot data, represented by crosses, but the isothermal data
that are decisive for the comparison with the curves. The latter are represented by
circles, squares, and triangles. The figures have the same order as the materials in
table 2; they have been arranged according to decreasing nuclear charge. A large
number of the measured points to which we fitted our new theoretical curves has been
taken from Ullmann and Pan’kov (1976). A number of the isotherms were computed
in the usual way by means of the Mie-Griineisen equation and of the Rankine -
Hugoniot conservation law from experimental Hugoniot data. The formulae are
given by Walzer et al (1979), for example.

Table 1. Explanation of the symbols of the experimental high-compression data used in figure 1.

Metal Symbol

Source

solid circles
open squares

Pd, Mo

Rb, K, Na, Li solid circles
open circles
crosses

open triangles

Au, Ag, Cu, Ca, Mg solid circles

solid squares

open circles
Crosses
open triangles

Pb, Sn, Cd, Zn, Ni, V open triangles,
corner down

open triangles,
corner up

crosses (diagonal)
solid circles
open circles

crosses (upright)
solid squares

In, Nb crosses
solid circles
open triangles
open circles
Fe open circles

solid circles
solid triangles
open squares

crosses (diagonal)
crosses (upright)

293 K isothermal data, Mao et al (1978)
Ming and Manghnani (1978)

room-temperature isotherm based on Hugoniot
data reduction (Grover et al 1969)

static data (Vaidya and Kennedy 1971)

Rice et al (1958), Bakanova et al (1965),
Carter et al (1971), Grover et al (1969)

Bridgman’s data (quoted by Birch 1966)

room-temperature isotherm based on Hugoniot
data reduction (Carter et al 1971)

zero-temperature isotherm (Al’tshuler et al
1962)

static data (Vaidya and Kennedy 1970)

Hugoniot data (Carter et al 1971)

Bridgman’s data (quoted by Birch 1966)

Bridgman’s data (quoted by Vaidya and
Kennedy 1970; Kennedy 1972)
Bridgman’s data (quoted by Birch 1966)

Hugoniot data (McQueen and Marsh 1960;
Al’tshuler et al 1960)

room-temperature isotherm (McQueen and
Marsh 1960)

static data (Vaidya and Kennedy 1970, 1972)

Hugoniot data (Al’tshuler et al 1962)

room-temperature isotherm based on the above
Hugoniot data

Hugoniot data (Rice et al 1958)

room-temperature isotherm based on the
above Hugoniot data

Bridgman’s data (quoted by Birch 1966)

static data (Vaidya and Kennedy 1970, 1972)

static data (Mao and Bell 1978)

isotherms from Hugoniot data (Takeuchi and
Kanamori 1966)

isotherms (McQueen and Marsh 1960;
Pan’kov and Kalinin 1974)

x-ray data (Takahashi et al 1968)

shock-wave data (Bancroft et al 1956)

smoothed Hugoniot data (Takeuchi and
Kanamori 1966)
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Table 2. List of material parameters used. Values of the atomic volume v, from Goérecki (1979).

Element Z w 00/1073° m?3 Ko/kbar ? (i Reference

Pb 82 2 30.33 419 5.72 16

Au 79 1 16.96 1664 52 7,12, 14

Sn(w) 50 4 27.07° 532 49 7,8

In 49 3 26.12° 392 6.0 15

cd 48 2 21.58 4579 6.77 2

Ag 47 1 17.06 1015 553 6,13

Pd 46 2 14.72 1880 535 8

Mo 42 4 15.58 2610 44 8

Nb 41 5 17.98 1690 6.9 8

Rb 37 1 92.67 262 3.39 5

Zn 30 ) 1524 598 49 6,78
6.4

Cu 29 2 11.81 1330 5.65 12

Ni 28 2 10.94 1790 6.2 8

Fe(e) 26 2 10.81°¢ 2060 4.0 11

% 23 3 13.88 1537 35 89 10

Ca 20 2 43.48. 183 278 6,7

K 19 1 75.31 31.2 3.85 4

Mg 12 . 23.27 3442 4.16 2

Na 11 1 39.50 61.8 3.59 2,3

Li 3 1 21.61 115 3.56 1

3Ullman and Pan’kov (1976); Pcomputed from table 7 of Gschneidner (1964);
from vy = 11.77 x 107* m? for Fe(a).

References: 1, Day and Ruoff (1974); 2, Anderson (1966); 3, Ho and Ruoff (1968); 4, Smith
and Smith (1965); 5, Grover (1971); 6, Vaidya and Kennedy (1970); 7, Ullmann and Pan’kov
(1976); 8, Guinan and Steinberg (1974); 9, Bolef (1961); 10, Gschneidner (1964); 11, Takahashi
et al (1968); 12, Barsch and Chang (1967); 13, Daniels and Smith (1958); 14, Carter et al
(1971); 15, Voronov and Goncharova (1971); 16, Miller and Schuele (1969).

4 Conclusions

For metals, a new equation of state has been devised which is based on a more
precise analysis of the bonding forces. This theory, though developed in analogy to
the statistical theories, yields, in contrast to them, realistic results not only for very
high pressures, but also for medium pressures where the shell structure of the atoms
is still evident. Thus, it might be expected that it is applicable to the metallic core
of the earth and other planets, and also to material physics. The computational
expenditure is much lower than for the TF and related theories, but higher than, for
example, for the equation of state of Birch (1966). A comparison of the isothermal
theoretical curves of the twenty metals studied with the measured data (see figure 1)
yields good to excellent agreement for seventeen materials and moderate agreement
for three. It must be noted that the Hugoniot data must not be taken into account
when considering the fit. Because of the deeper physical reasoning involved in
derivation of the MY equation there is hope that an extrapolation beyond the range
covered by measured data is more justified than with other equations of state
commonly used in practical materials research for high pressures. Only well-known
quantities are required as material parameters, that is, nuclear charge, valency, atomic
volume, bulk modulus at zero pressure, and its first derivative with respect to
pressure at zero pressure.
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Figure 1. Pressure-relative volume plots for metals. The isotherms were computed by means of the
new MY equation of state, use having been made of the material constants listed in table 2. The
type and origin of the experimental data entered for comparison purposes are shown in table 1.
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Figure 1 (continued)
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