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Abstract

The dependence of melting temperature on the atomic volume is inferred in two separate ways
from different assumptions. The first deduction is based on an interatomic pair potential and a
dislocation model, while the second one is based on the equation of state by ULLMANN and PAN’KoV,
on an expression for the dependence of the GRUNEISEN ratio on pressure and bulk modulus and on
LiNnDEMANN's law. It is also possible to infer the equation of state from the lattice theory alone. From
this, the exponents of the T'm(v) equations are independently determined. They are found to be in
agreement. Reversing the sequence of conclusions, one may, if one accepts the other aforementioned
premises, infer LINDEMANN’s law. However, this applies only for high coordination numbers and
high pressures, respectively. In a systematic manner, new dimensionless quantities @; containing
the melting temperature are defined, and their pressure dependence is calculated analytically and
numerically, there being no necessity of solving the equation of state so that density stands alone
on one side of the sign of equality. The most simple one of these dimensionless quantities, @,, shows
an interesting systematics for the elements of the periodic table. For high pressures, the @, values
of the metals are scattered around merely insignificantly variable average values which slightly
depend on pressure. If one might proceed from the assumption that, at an appropriate pressure,
but at an assumed zero temperature, the materials of the Earth’s core would exist in the form of a
close-packed structure, it is possible to determine the ratio of melting temperature to formula weight as
a function of the pressure for the actual Earth’s core.

Zusammenfassung

Die Abhingigkeit der Schmelztemperatur T vom Atomvolumen » wird auf zwei getrennten
Wegen aus unterschiedlichen Voraussetzungen hergeleitet. Die erste Herleitung geht von einem
zwischenatomaren Potential und einem Versetzungsmodell aus, die zweite beruht auf der Zustands-
gleichung von UrrMaNN und PanN’kov, auf der Vashchenko-Zubarev-Formel fiir die Abhingigkeit
des Griineisen-Verhéltnisses von Druck und Inkompressibilitdt und auf LINDEMANNS Schmelzpunkt-
gesetz. Aus der Gittertheorie allein kann man auch eine Zustandsgleichung herleiten. Aus den beiden
Zustandsgleichungen werden unabhiingig die Exponenten der 7'm-v-Gleichungen bestimmt. Diese
erweisen sich als iibereinstimmend. In Umkehrung der Schlufkette kann man bei Annahme der
anderen Voraussetzungen das Lindemann-Gesetz herleiten, was jedoch mit Notwendigkeit nur fiir
hohe Koordinationszahlen bzw. hohe Driicke gilt. Es werden in systematischer Weise neue dimen-
sionslose GroBen @, die die Schmelztemperatur enthalten, definiert und ihre Druckabhingigkeit
analytisch und numerisch berechnet, wobei Auflosbarkeit der dabei benutzten Zustandsgleichung
nach der Dichte nicht nétig ist. Die einfachste dieser dimensionslosen Gréfen, @, zeigt fiir die Ele-
mente im Periodensystem eine interessante Systematik. Fiir hohe Driicke streuen die Q,-Werte
der Metalle um nur wenig verdnderliche Mittelwerte, die schwach vom Druck abhingen. Falls man
annimmt, dafl die Stoffe des Erdkerns unter entsprechendem Druck bei (gedachter) Nulltemperatur
in dichtester Kugelpackung vorligen, so ergibt sich eine Méglichkeit, das Verhiltnis von Schmelz-
temperatur zu Formelgewicht als Funktion des Druckes fiir den Erdkern zu bestimmen.

1) ZIPE Contribution No. 770.
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1. Introduction

The problem of the dependence of the melting temperature 7'y, on pressure P
has neither theoretically nor experimentally been satisfactorily solved for the high
pressures of the lower mantle and the Earth’s core. That is to say that the published
melting point curves vary considerably from author to author in contrast to the mo-
dern pressure-dependence curves of density, bulk modulus, shear modulus and seismic
velocities. However, it is precisely this quantity which is decisive for various funda-
mental problems of geodynamics, e.g., for mantle convection and for the magneto-
hydrodynamic theory of the outer core. The reason is that, firstly, viscosity —
irrespective of the prevailing creep mechanism — is proportional to exp (ky T'm/T'),
with &, being a constant and 7 the actual temperature, and, secondly, that the mutual
positions of the curves of adiabatic temperature, melting temperature, conduction
temperature and actual temperature are decisive for the dynamo mechanism (see
Kexxepy and Higeins [23], LopEr [30], ULLMANN and WALZER [48, 49]). The
problem of the actual melting temperature curve of the outer core can be formally
subdivided into three questions: a) Which theory for 7', (P) applies to pure materials
under such high pressures? b) What is the chemical composition of the core? ¢) How
do the phase diagrams of probable mixtures vary with pressure? The present paper
is designed to make a contribution to question a).

2. A new approach to Lindemann’s law

Below, it will be shown that it is possible to approach in two separate ways the
same law for the dependence of melting temperature on volume, which applies to
pressures as prevailing in the interior of planets.

The first deduction is based on the lattice theory and on a dislocation model. We
assume that for pressures in the deep interior of the Karth an atom (or molecule)
will mostly have twelve adjacent neighbours” Therefore, in the following we shall
always consider a face centered cubic lattice (see Fig. 1). We suppose that our con-
siderations apply with minor changes also to other lattices having a high coordination
number. The volume per number of atoms is v = a®/4, the neighbour distance
ro = a/}2. Lattice points can be expressed as l;a, + lya, + l3a,, with |a;| = |a,|
= |ag| = r, and [;, [, and I, being integers. For fcc, Iy + I, + I; must be an even
integer. Moreover, we define

Bag 120 (1)

Fig. 1. The fcc lattice
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According to BorN and HuaNe [5] we assume that the interatomic forces have the
following potential:
mn 1 m 1 n
e = (= () 2

where m > n. The minimum of the potential function g has the value — %, and is
located at a distance p, (see Fig.2). For cubic Bravais lattices, there are three
independent elastic constants: ¢y, ¢9, ¢44. Because of the CaucHy relation for the
central force we have, additionally, ¢;, = ¢,,. From Eq. (2), we obtain for the elastic
constants:
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The summation has to be performed over all lattice points. The averaged isotropic
shear modulus g is
1§
=it = Gio + 8644), (5)

This is Vorar’s formula. From HEgs. (3) -+ (5) and CAucHY’s relation it follows that
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For a perfect crystal and our potential function (2), we have the following enthalpy H:
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Fig. 2. The potential function y(r?) according to Borx and Huana [5]
3*
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N is the number of atoms or molecules. From the general thermodynamic relations
H—FE 1+ PVand P = — (dE]dV)s we obtain for an elastic compression g H/dv = 0.
Eis theinternal energy, P the pressure, V the volume, , as before, the atomic volume.
Index S means isentropic. The equation of state results from Eq. (9) and 0 H/0v = 0.

m —n

P= %g et {2m/3 04" (2 zT}L) p—(mf31) __9u/3 g n <2 TD v—(n/3+l)} o o(10)

The bulk modulus % is obtained from this and from » = —v d P/dw.
A T fogy=(m/3+1) — g p=(n/+1)) (11)
where
0y — 2m/3 gym (2 l%) (m + 3) (12)
and :
0y = 2039, (2 71) L) (13)

So far, we have used the theory of the perfect lattice for determining quantities which
we are going to employ now in a dislocation theory of melting. Like MACKENZIE
and Morr [32], KUBLMANN-WILSDORF [26], STACEY and IRVINE [44], NINOMIYA [36]
and others we assume that the free energy of dislocations becomes zero at the melting
point and that the dislocation concentration Cq reaches a saturation value. Cot-
TERILL [10,11] gives an excellent presentation of the correlationship between melting,
dislocations, anharmonicity, solitons and other phenomena. The basic idea presented
below is that the number of dislocations increases so rapidly as the melting point is
approached that the shear modulus nearly deereases to zero.
The strain energy per unit length of a screw dislocation can be expressed by

(PP
Ui =l = (14)
where b is the BURGERS vector. r; and r, are the outer and inner cutoff radii of the
dislocation. The inner radius denotes the region of distortions in the core of the
dislocation, the outer radius is approximately equal to the distance between two
adjacent dislocations. The strain energy per unit length of an edge dislocation is
given by

b? 7

. Zn’(‘l = 1n7: (15)
where » is Porssox’s ratio. According to KUHLMANN-WILSDORF [26] and NINOMIYA
[36]. one may use approximately apb?/47 for the strain energy per unit length of a
dislocation, with x ~ 0.9, if we have Cq < 0.33 for the dislocation concentration.
The possibility of introducing a constant « is due to the fact that r, and r, depend
on pressure P and temperature 7" in the same way. Thus, for the dislocation density
N Cq, there follows a proportion of dislocations in the strain energy of N Caoxpub?/4z.
1f we add to this the strain energy of the perfect lattice, we obtain the total strain
energy. The further steps up to Eq. (17) are only mentioned because we proceed
here in the same manner as NiNomrya (1978a). A further contribution to the free
energy stems from lattice vibration so that

w

G — + Nowet + N Cqoub®ldn + 3NETIn ;7 + N CakT'ln (16)
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results for the free energy. The last two terms describe the vibration free energy,
£ is the uniform dilatation of the lattice, k the BoLTZMANN constant, w the average
frequency of phonons, A® the average frequency of dislocation vibration, 4 PLANCK’s
constant. From Eq. (16) we obtain

e i e e s S N e B )
= Gy xv4n7ad% 9 €d ay d s

This formula is now the starting point for our further considerations. G, is the free
energy of the perfect lattice, y is GRUNEISEN’s ratio. At the melting point, the free
energy of dislocations vanishes, i.e., ¢ — Gy =0 applies. e may be assumed to be
approximately constant because the relative volume change on melting is approxi-
mately constant for the chemical elements, deviations from the mean value being
smallest for fce, bee and hep structures (GSOENETDNER [17]). Now let us apply the
melting point theory — as can be seen below — to elements under high pressures

so that these assumptions exactly apply. For fcc lattices, we have T — }/5. Hence,
from this, from ¢ — G, = 0 and from Egs. (6), (11), (17):
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the fusion entropy being expressed by
AS = Nk [3eqy + Caln (1/4)]. (19)

Eq. (18) does not contain any essential implicite dependencies on ». In particular,
A8 is also approximately independent of P(v) (GSCHNEIDNER [17]; StisHOV [45]).
Jackson [21], too, found that the fusion entropy is mainly a function of crystal
structure. But the structure is considered to be invariable in our calculation. From
Eq. (18) we obtain

.t el (20)
where
cszﬁzxodcl—%ﬁ% (21)
and
cGZ%mOdcz’%‘z%- (22)

Trrespective of the calculations made so far, Eq. (20) will now be derived from
three completely different initial equations. Two of these initial equations have
already been confirmed, the third one is LINDEMANN’s law in the form of a differential
equation. It can be shown that the sequence of conclusions can be reversed so that
it is possible to infer from the first two initial equations of the following second de-
duction of Eq. (20) and from Eq. (20) to LinDEMANN’s law. However, with the assump-
tions made by us, this is only a good approximation for high pressures. Like MATSUDA
and HIwATARI [35], we suppose that the melting temperature depression observed
for low pressures with Ge, Ga, Sb, Bi and ice is due to the loose packed structure of
the solid. For high coordination numbers Eq. (20) must apply as has been shown
above.
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The first initial equation mentioned is the equation of state (model 1) by ULLmMANN
and PAN'Kov [47]
3%,

P=—_

= (x(1/3)—(2/3)"1 =as x—(1/3)*(1/3)"1)’ (23)
T

where x = V|V = v/v,. Index 0 denotes the corresponding quantity for P = 0.
%y — % plg and oy — gi; ’P*O’ i.e., %, denotes the zero pressure bulk modulus, %,
the first derivation of the bulk modulus at vanishing pressure. For % = 4, Eq. (23)
becomes the equation of state by Bircu [4]. WALzER, ULLMANN and PAN’KOV [52]
compared Eq. (23) with other modern equations of state. They found that the equa-
tion yields results that show the best agreement with experimental high-compression
data of cubic solids. The second initial equation is the expression obtained by Vasu-
CHENKO and ZUBAREV [50] from the free volume theory for the GrRUNEISEN para-
meter:

2 B
9 %

bo
(o9

(24)

Using a new approach, TrvINE and Stacey [19] set up Eq. (24) for purely central
forces, ignoring for the most part the special form of the interatomic potential. If,
unrealistically, only one-dimensional atomic motion of the atoms is assumed, one
obtains through the same method the well-known expression for y suggested by
Duepare and MacDoNarLp [12]. ULLMANN and WALzER [49] took into account the
contribution of the electrons to y, which, however, is not very significant for some
applications. We have also shown that Eqs. (23) and (24) yield

Zits il 1 (%1‘2)(”1;3)

% FabBE o v T v (25)
The third initial equation is LINDEMANN’s melting law
Tt dTm/dP — 2(7/—%)/%, (26)

where T’y is the melting temperature. A thermodynamic approach to LINDEMANN’s
law can be found with Stacey and IrviNE [43]. With » = — & dP/dz, we obtain

from Eq. (26)
din Tp 1

e - (3 “V)- (27)
Now, Eq. (25) is substituted in Eq. (27). Using the substitutions 7'y, — e and z — ef,
one may solve the differential equation without neglects:

2 — 23,
%1

o(f) = “ e

Hence,

o exp [((2/3) — (1/3) ;) £] — 1) + const,.  (28)

— 5 (v \(4/3)-2/3) % 2/3) —(1/3),
Tm:const-[z"l a<3,>(/)‘/)"_<?i,>(/>(/)u]

% — 3 \v,

(29)

Vo

It is immediately evident that Eq. (20) and Eq. (29) have the same mathematical
form of 7'y, = T (v). Now, let us compare the exponents. To be able to determine
them by a second method, we compare the equation of state (10) derived solely from
the lattice theory (without using the dislocation theory), with the equation of state
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(23) for the derivation of which neither the VASHCHENKO-ZUBAREV formula nor
LinpEMANN’s law is required. When equating corresponding exponents in the two
equations of state, we obtain

m = 2x; —4 and n = »; — 2. (30)

Whereas the s, for metals are found approximately in the range between 2.5 and
6.5, they are higher for inert gases. For instance, according to BrrcH [4], Ne has
#, = 8.3, consequently, we have m = 12.6 and n = 6.3. Thus, Eq. (2) yields nearly
a 12—6 LENNARD-JONES potential for Ne. Generally (i.e., for all materials), m = 2n.
If we substitute Eqs. (30) in Eq. (20), we can see that the exponents are in complete
agreement with those of Eq. (29). As has already been pointed out in the remarks
under Eq. (22), this agreement is a renewed proof of LINDEMANN’s melting equation
for high pressures if the other assumptions are accepted.

3. Discussion

LINDEMANN [28] supposed that melting starts when adjacent atoms get into direct
contact through thermal vibration so that the crystal lattice is destroyed. GILVARRY
[15] modified this conception by suggesting that the root-mean-square amplitude
of thermal vibration must reach a certain percentage of the nearest-neighbour dis-
tance. MARTIN and O’CoNNoOR [34] measured these amplitudes by the separation
of the elastic component of Braca diffraction peaks using the MOsSBAUER effect.
The substances used for their investigation were simple alkali halide and metal
crystals. They found a good agreement with LAINDEMANN’s law. The version of LINDE-
MANN’s law used in Eq. (26) can be traced back to GILVARRY [15]. For melting, the
GieBs free energies of the solid and of the fluid must be identical. This makes it
easily possible, as is well known, to infer the Crausius-CLAPEYRON relationship
by using the first law of thermodynamics. From this relationship and from the M1E-
GRUNEISEN equation, STACEY and IRVINE [43], using the thermodynamic approach,
obtained a relation which differs from Eq. (26) only in that 1/3 was substituted by
0.23. Based on EyRING’s significant-structure theory and on the above-mentioned
identity of GiBBs free energies, LEPPALUOTO [27] obtained estimates for the melting
temperatures of iron which correspond to the pressures existing in the outer core.
They proved to be consistent with the LiNDEMANN law. Boscur [6] published a
paper on the topic discussed. His T, — P curve for Fe is similar to that attained
by LePPALUTOTO, although it had been calculated using a different method.

Some substances show maxima in their melting curves, e.g., rubidium according
to Buxpy [9], tellurium according to TIkRHOMIROVA and St1sHOV [46], sulfur according
to Vezzorr and WawLsH [51]. These examples do not contradict the validity of LINDE-
MANN’s law at high pressure, since each of the minima of the melting curve is a
triple point where the P — 7' regions of a less densely packed solid phase are bordering
on a denser one. This shows that our presumption that a close-packed structure
exists is not yet satisfied in this pressure range. Various attempts have been made
to calculate theoretically melting curve maximum phenomena (e.g., OGURA et al.
[38]; BRINDEATU et al. [8]), the assumptions being made frequently differing strongly
from one another. It may very well be theoretically expected that many highly
compressible substances exhibit experimental 7'y-values in the pressure range cur-
rently accessible through static experiments, which are lower than the values cal-
culated according to LINDEMANN’s law. However, in view of the theory presented
above it is not recommendable to extrapolate from the empirical linear 7'y — P
relationship by KrauT and KENNEDY [25] to the pressures prevailing in the Earth’s
core. Due to the fact that the chemical composition of the Earth’s core has not been
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completely determined yet (see, e.g., BRETT [7]; IT0 [20]; RiNawoOD [40]; AHRENS
[1]), it is impossible at present to specify a binding actual 7'y, — P curve for the
Earth’s core. In spite of the rejection of the extrapolation according to KENNEDY
and HreGINs [23], however, the core paradox has not been resolved by any means.
It has, namely, been found [49] that, if one additionally takes into account the small
share in the GRUNEISEN parameter, which is due to the electrons, the gradient of the
adiabatic temperature is somewhat higher than that of the melting curve of hep
iron according to L1v [29]. However, IRVINE and STACEY concluded from equation-of-
state studies that fcc iron is present in the core (Sracey [42]). Incidentally, if one
uses only the VASHCHENKO-ZUBAREV gamma for calculating the adiabatic tem-
perature, the paradox disappears also with Liv’s melting curve. To attain greater
accuracy in determining the melting point curve, surely, one will have to take into
account the influence of the lighter components of the outer core. The phase diagram
may really be very complicated. At present, there are no means for computing it
with sufficient accuracy for these pressures. The assumption itself suggests that
both the melting temperature and its gradient are lower than for pure substances.
However, I am very confident that for pure substances, including iron, the previously
deduced volume dependence of melting temperature or LINDEMANN’s law under
high pressures (and, thus, also for the Earth’s core) is a good approximation.

4. A new dimensionless quantity and its pressure dependence

Let us now look for dimensionless quantities to be used as a tool for a subsequent
numerical determination of the 7'm — P curve for the Earth’s outer core, and for a
discussion about the possible chemical composition of the outer core. The quantities
are to differ as little as possible for various substances. In the construction, three
premises have to be taken into account: Firstly, melting temperature is to be one
of the initial quantities. Secondly, although we-start by examining the dimensionless
quantity for pure substances only (the chemical elements and some simple com-
pounds), the measured quantities used are to be, as far as possible, such quantities
as are quite reliably known also for the Earth as a function of depth. Thirdly, the
pressure dependence of the measured quantities used must be considered, for which
purpose we use the results achieved in the previous paragraphs. In view of the second
premise, one may not simply take the LEIBFRIED number or Brage number (see
GSCHNEIDNER [17]), because it contains the shear modulus. The shear modulus
reduced to zero temperature cannot, however, be determined for the outer core, SO
that subsequent application to the outer core would not be possible. Now, to get a
first hint, let us have a look at Fig. 3 where, using the data from Tab. 1, the melting
temperature of the chemical elements has been plotted versus the bulk modulus
for P = 0. The coordination number was taken from PLENDL and GIELISSE [39].
Although the points are widely scattered, the distribution of the points justifies the
assumption that 7'm/» must be present in the expression we are looking for.

We define dimensionless quantities @; by

il =i (31)
where j is a real number, and
1] x
Nl — H) 2 —ng . (32)

F is the formula weight, ¢ the density, R, the universal gas constant. The reason
why the quantities @; have been formed precisely in this manner has been mentioned
above and is to be discussed in greater detail in another paper. Here, we wish to
study the dependence of these quantities on pressure, with the figures mainly showing
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Fig. 3. Melting temperatures of the chemical elements plotted versus the bulk modulus for P = 0
The symbols denote the atomic coordination number. The legend can be seen at the lower right of
the Figure

the results for @, = N;=1. From Eq. (32) we obtain
d(In N)/dP = § (In%)/dP — 9 (In Tw)/d P — 9 (In 0)/d P. (33)

From this and from LiNDEMANN’s law, Eq. (26), follows
d(n N)JOP = 920 —2 (y — ) — (4/) Dld P)) /. (34)
Since x = ¢ 3 P[0o we have
d(ln Ny)/dP = (90 P — 2y — 1/3)/x. (35)

From this and from Eq. (24) we obtain
dInN; 1 — (P/x) (d%/0P)

dP ~—  (3/4x—P o)
Now we form the analogue to this equation for y, using Eq. (24)
dl 23/0 P*?
ny Pr/0P* + f h: / (37)

dP — 0x/0P — 5/3 + (4/9) (P/x) ' 1/3 — (4/9) (P/x)
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where
J = (4/9) [1/x — (P[x*) (0%/0 P)]. (38)
The pressure dependence of @); is obtained by integrating the quantity
gi=d(In @))/dP =j-d(lny)/dP —d(In N;)/d P, (39)

Egs. (36) -+ (38) having to be substituted in Eq. (39). So far, no special equation
of state has been used in this paragraph. The formulations used up to now are based
on the presumption that the equation of state permits to write » as a function of P
explicitely so that the integration can be performed. This implies that x = x(P)
can be analytically formed from P = P(x), with « = V/V . This is possible for the
equations of state obtained by Tarr (see MacDoNaLD [31]), by Mao [33] and by
GrovEr et al. [16], but not for Eq. (23) by ULLmany and Pan’kov [47] and its
special case, the equation of state by BircH [3]. However, since we consider Eq. (23)
to be well substantiated by a comparison with measured data (ULLMANN and PaN’KoOV
[47]; WALzER et al. [52]), we shall make a detour so as not to be forced to introduce
neglects: We regard the auxiliary quantity ¢; exclusively as a function of 2 by eliminat-
ing P, %, 0%/0 P and 9%x/d P? on the right-hand side of Eq. (39), taking into account
that for all equations of state

0x|0P = — xx'[n (40)
and
02%[0 P2 = {x” + " [(1)x) — (%' [3)]}/ ()2 (41)
with @” = 0x/dx and x”" = 0%x/d2%. In the development
OP[dxr = — njx (42)
and 9*P|0a* = — 21 9x/dx + x~2x have been used. Only now do we use the special

equation of state (23) for computing », 0x/d P and 9%x/0 P> by means of Eqs. (42),
(40) and (41). Now the g; for any « in the interval 1 = « > 0 can be analytically
and numerically computed. 2 and P have a one-to-one correspondence, which is
defined by Eq. (23). This makes it possible to determine @; as a function of P through
numerical integration.

5. Results: Qy(P) — a new tool for determining
the melting temperature in the Earth’s core

We not only want to investigate the pressure dependence of @, but also examine
whether the ((P) of the chemical elements, when arranged according to the periodic
table, exhibit a systematic structure. Only then do we want to investigate the chemical
compounds. A computer was used to calculate the @ ,(P) and @, (P). At first, however,
we shall discuss @,. For elements, the substance constants required for computation
are listed in Table 1. In Figs. 4--- 6, the dimensionless quantity @, is shown as a
function of pressure. For nearly all elements, this quantity is only slightly variable
at the pressures prevailing in the core, while the quantities varying with pressure,
which quantities play a role in the formation of @, i.e., T'm, » and g, exhibit a signi-
ficantly greater relative change in the region of the core. The @, — P curves of the
elements show a considerable convergence. If the consideration is confined to elements
which were present for the determination of the employed substance constants
in the form of the densest packing, i.e., in fcc or hep structure, the curves occur nearly
exclusively in the bunches. It can be seen in Fig. 6 that the curves of the elements
of the sixth period form two bunches in the core region. All elements of the lower
bunch, except Bi, have fcc or hep structure, the bee structure prevails in the upper
bunch. In Figs. 7, 8 and 9, the @, values are shown for vanishing pressure, for the
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Table 1
Physical substance constants of chemical elements used for P = 0. Melting temperature T'm according
to GsCHNEIDNER [17], formula weight F according to EBErT [14], density o and bulk modulus
for the lanthanons and actinons according to KirTeL [24], density, bulk modulus and its derivative
with respect to pressure for the other elements according to ULLMANN and PAN’koVv [47]. A significant
part of the data collection in the latter paper stems from O. L. ANDERsoN [2] and GuIiNaN and
STEINBERG [18]. N, is the dimensionless quantity for P = 0 defined by Eq. (32), where R, = 8.314,41
J/(K - mol). The value denoted by a) actually applied to bec iron, if the hypothetical melting point
curve for hep iron by Liu [29] is drawn for low pressures, one attains the same value

Ele- Ty [K] o [g/em?3] x, [kbar] F [kg/mol] N, %
ment

Li 454 0.534 115 6.94 39.59 3.56
Be 1,557 1.84 1,100 9.01 41.61 4.6
B 2,498 2.31 1,785 10.81 40.22 3.26
Na 370.8 0.970 61.8 22.99 47.51 3.59
Mg 923 1.74 344.2 24.31 62.66 4.16
Al 933.2 2.697 729.1 26.98 94.00 4.7
Si 1,685 2.33 970.8 28.09 83.54 4.16
P(r) 868 2.35 192 30.97 35.06 6.68
K 336.6 0.86 31.2 39.10 50.69 3.85
Ca 1,112 1.53 163 40.08 46.18 2.
Sc 1,812 2.98 546 44.96 54.68 2.1
Ti 1,941 4.50 1,060 47.90 69.91 4.37
A\ 2,178 6.09 1,537 50.94 70.99 3.5
Cr 2,148 7.194 1,600 52.00 64.76 4.89
Mn 1,517 7.47 597 54.94 34.81 5.0
Fe(e) 1,8082) 8.36 2,060 55.85 91.55 4.0
Co 1,765 8.79 1,860 58.93 i 84.98 4.26
Ni 1,726 8.90 1,790 58.71 82.28 6.20
Cu 1,356 8.932 1,330 63.55 83.93 5.65
Zn 692.655 7.14 647 65.37 102.86 6.40
Ga 302.8 5.91 568 69.72 266.15 3.6
Ge 1,209 5.33 724.3 72.59 98.13 4.35
As 1,090 5.77 631 74.92 90.40 5.2
Se 490 4.81 89.7 78.96 36.14 5.8
Rb 311.8 1.53 26.2 85.47 56.46 3.39
Sr 1,045 2.58 116.1 87.62 45.38 2.1
VA 1,775 4.47 410 88.91 55.26 2.1
Zr 2,123 6.53 949 91.22 75.11 4.11
Nb 2,741 8.63 1,690 92.91 79.84 6.9
Mo 2,888 10.218 2,610 95.94 102.06 4.4
Te 2,443 98.91

Ru 2,553 12.44 3,030 101.07 115.97 6.61
Rh 2,233 12.42 2,820 102.91 126.87 4.50
Pd 1,825 12.04 1,880 106.4 109.49 5.35
Ag 1,234 10.50 1,015 107.87 101.63 5.53
Cd 594.18 8.65 457.9 112.40 120.44 6.77
In 429.76 7.29 392 114.82 172.78 6.0
Sn 505.06 7.28 532 118.69 206.55 6.01
Sb 903.6 6.69 411 121.75 99.56 4.9
Te 722.8 6.27 233 127.60 78.90 8.3
Cs 301.8 1.83 1479, 132.91 51.81 3.17
Ba 998 3.61 94.3 137.34 43.24 2.43
La 1,193 6.16 267 138.91 60.70 3.2
Ce 1,070 6.77 239 140.12 55.60

Pr 1,208 6.78 306 140.10 62.95

Nd 1,297 7.00 327 144.24 62.48

Pm 1,308 141.91
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Table 1 (continuation)

Ele- Tn[K] o [g/cm3] %, [kbar] F [kg/mol] N, #y
ment

Sm 1,345 7.54 294 150.4 52.44

Eu 1,099 5.25 147 151.96 46.57

Gd 1,585 7.89 383 157.25 57.92

Tb 1,629 8.27 399 158.93 56.61

Dy 1,680 8.53 384 162.50 52.37

Ho 1,734 8.80 397 164.93 51.61

Er 1,770 9.04 411 167.26 51.67

Tm 1,818 9.32 397 168.93 47.61

Yb 1,097 6.97 133 173.04 36.20

Lu 1,925 9.84 411 179.97 46.97

Hf 2,495 13.25 1,080 178.49 70.13 3.95
Ta 3,271 16.62 1,910 180.95 76.46 3.15
w 3,653 19.26 3,060 183.85 96.17 3.95
Re 3,433 21.03 3,587 186.2 111.27 5.41
Os 3,300 22.58 4,200 190.2 128.94 3.4
Ir 2,716 22.65 3,580 192.22 134.53 4.83
Pt 2,042 21.47 2,770 195.09 148.25 5.18
Au 1,336.2 19.30 1,664 196.97 152.86 6.51
Hg 234.28 14.24 282 200.59 203.92 4.6
Tl 576 11.85 337 204.37 121.37 5.1
Pb 600.576 11.34 419 207.2 153.31 . 5.72
Bi 544.525 9.807 332 208.98 156.26 6.06
Th 2,024 11.72 543 232.04 63.88

U 1,404 19.05 987 238.03 105.65

pressure at the core-mantle boundary and at the inner-core boundary, respectively,
in the periodic table. The points of the elements of the fourth period are linked in the
three figures through continuous lines, those of the fifth period through dashed lines
and those of the sixth period through dotted lines so that the figures can easily be
compared to one another. For P = 0 and the 4th through 6th periods, one can see
that from group IA to VA the three curves are running very close to one another,
and this close proximity continues for the curves of the 5th and 6th period up to
group VIITA. While the quantity @, of the elements shows a wide range of values
for P = 0, i.e., scatters considerably, it can be seen in Figs. 8 and 9 that for the high
pressures of the Earth’s core, of which only those of its two boundary faces are shown
here, the quantities ¢, do not scatter remarkably for most elements including iron.
This is even more true when one confines oneself to metals. The @, of Fe is seen to
lie quite close to the mean value of the @, of the metallicelements.This smallscattering
of the @, and the aforementioned stronger convergence of the ¢, — P curves in the
case of fcc and hep structures justifies the hope that it might be possible to approxi-
mately determine the melting temperature to formula weight ratio

Twm(P)/F = [Qy(P) - #(P)]/[R, - o(P)] (43)

for the Earth’s core as a function of the pressure P. For this purpose, x(P) and o(P)
have to be taken from a reliable model of the Earth, e.g., that by DzZrTEWoNSKT et al.

[13], for the core, @, being the mean value of the @,-values of all elements with a
close-packed structure for a special pressure P. If F isfixed by assuming a geochemical
hypothesis, 7'y (P) can be determined. The implementation of this suggestion, how-
ever, has to be reserved for a later paper.
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