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Using a new theory of the volume dependence of Griineisen’s parameter we have reconsidered the core paradox.
If the melting-point curve according to Higgins and Kennedy (1971) applies, and if the inner and outer cores are
chemically equal, thermo-convective dynamos are impossible throughout the outer core. Thermal convection would
be prevented even in the 200—300 km thick layer at the bottom of the outer core where, for constant y-values, ther-
mal convection is possible. Using Leppaluoto’s (1972) and Boschi’s (1975) melting-point curves and the volume-
dependent v, thermal convection is possible. Liu’s (1975) melting-point curve shows the phenomenon of poly-
morphism of iron. The curve of adiabatic temperature computed by using our theory runs very closely above this,
and consideration of the electronic contribution to Griineisen’s parameter produces a curve which runs very close
below Liu’s curve. By using the other melting-point curves mentioned above the conclusions are not altered. Thus
we see that the core paradox exists not only in the case of Higgins’ and Kennedy’s (1971) melting-point curve and,
despite claims to the contrary, this problem is unresolved even today. Various possibilities to circumvent the para-

dox are discussed.

1. Introduction

We present an investigation of the temperature
distribution within the Earth’s outer core and of the
core paradox. At present, the generation of the geo-
magnetic main field is chiefly explained by a dynamo
mechanism. As is well known, each dynamo must
satisfy two fundamental theorems: (1) the magnetic
field generated by the dynamo must be neither axi-
symmetric nor two-dimensional; (2) mass flow con-
nected with the dynamo must not be purely toroidal,
i.e., the radial component of the velocity field must
not disappear. The second theorem leads directly to
the topic of this paper. To obtain a steady-state radial
velocity component of flow within the outer core,
thermal convection is usually assumed to exist there.
Higgins and Kennedy (1971), however, have claimed
that the liquid outer core has a stable, stratified struc-
ture and thermal convection, therefore, should be im-
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possible. This claim is based on an extrapolation of the
melting-point curve of Kraut and Kennedy (1966)
which shows a gradient with depth smaller than that of
the adiabatic temperature curve. If we assume the
outer and inner cores to be of the same chemical com-
position, and the temperature at the boundary
between the liquid outer core and the solid inner core
to correspond to the melting point of the material at
the pressure existing there, it follows that the adia-
batic temperature everywhere in the outer core is
below the melting temperature. However, since the
outer core is molten, the temperature cannot coincide
with adiabatic temperature, which should be the case
in practice if thermal convection were to exist. Con-
sequently, thermal convection is not permissible,
which contradicts the requirement oi dynamo theory.
In the following we will reconsider this so-called “core
paradox”’. The core paradox arises if the gradient of
the adiabatic temperature is greater than the gradient
of the melting temperature in the whole outer core.

It is evident that the melting-point curve does not



necessarily have to be that of Higgins and Kennedy
(1971). Other possible difficulties of Higgins’ and
Kennedy’s (1971) paradox have been discussed by
Verhoogen (1973) and Frazer (1973).

2. Models

It is well known that Kennedy and Higgins (1973)
have offered a solution to the core paradox. Recon-
sidering the problem they found that in their earlier
investigation a layer of ~200—300 km thickness at the
bottom of the outer core had been overlooked where
the adiabatic temperature for different constant
v-values is just above the melting temperature. We,
however, took into consideration the volume depen-
dence of Griineisen’s ratio . For this purpose we used
the formula of Vashchenko and Zubarev (1963) (see
eq. 4).

It was shown by Ullmann and Pan'kov (1976) that
the approximation function

X(x, £) = (9/2) [ko/ 2 — k)21 2710 172 (1)

for the strain energy of a hydrostatically compressed
body, measured per unit volume of the undeformed
body, can, in particular, be used to advantage for the
elucidation of physical properties of the Earth’s deep
interior. The volumetric contraction is defined by the
ratio of densities po and p of the body in its uncom-
pressed and compressed state, respectively, i.e., x =
po/p. The symbol £ represents the temperature T or,
alternatively, the entropy S. The material parameters
ko and k; > 2, depending on £, are the incompressibil-
ity and its pressure derivative, respectively, both quan-
tities relating to the zero-pressure state of the body.
Hence, for the pressure P, the incompressibility x =
k(P, £) and its pressure derivative, (3/3P)k(P, £), we
may write, approximately

P=_3X(x,&)/ox, k=x32X(x, £)fox>

3k /OP) = —1 — [(x*[K)(d@>X(x, £)/3x%)] @)

We call the above equations Model 1 (M1). Walzer
et al. (1979) compared three equation-of-state theories
by using experimental high-compression data on 17
cubic substances and found good agreement with the
measured values for M1. Assuming that the matter in
the Earth’s outer core can be represented by a homog-
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eneous monophase system, and that the consideration
of deviations from adiabaticity within this depth
range is not necessary on the basis of the available ob-
servational evidence, we calculated the corresponding
values of the material parameters pg, Ko and k; by
fitting M1 to the values of p, P and k in the outer
core which result from the parameterized Earth mod-
els (PEM) developed by Dziewonski et al. (1975). We
thus obtained

Po~6.710gcm™, Kko~1423 Mbar, «k,;~4.555

3

provided that these initial values are defined under
adiabatic conditions (¢ =S = constant). In Table 1,
values of pressure (P) and of velocity (vp,) of seismic
compressional waves resulting from eqs. 1 -3 are
compared with those computed by using PEM. Since
the outer-core matter reacts to seismic wave propaga-
tion as a fluid medium, we may put [k(P, S)]"? = v,,.
It is noticed that the values Ppgy and Py, as well as
UppEM and Up My, are in good agreement.

Irvine and Stacey (1975) derived a relationship for
the Griineisen parameter v taking the form

AR e

which was originally determined by Vashchenko and
Zubarev (1963) from quite different considerations.
This formula was derived presuming three-dimen-
sional thermal oscillations of atoms in a close-packed

TABLE I

Pressure P, compressional velocity vp and Griineisen’s
parameter v as functions of depth d in the Earth’s outer
core. The suffixes PEM and M1 indicate the reference models
used by Dziewonski et al. (1975) and Ullmann and Pan’kov
(1976), respectively

d Prem  Pmi Up,PEM UpM1 7

(km) (Mbar) (Mbar) (kms™) (kms™)

2885.3 1.3540 1.3540 8.002  8.154 1.3437
3071.0 1.5497 1.5512 8317 8450 1.3385
3371.0 1.8592 1.8635 8.777 8.877 1.3316
3671.0 2.1558 2.1616  9.176  9.246 1.3261
3971.0 2.4345 24393 9514 9562 1.3216
4271.0 2.6913 26933 9.792  9.833 1.3181
4571.0 29224 2.9219 10.009 10.063 1.3152
4871.0 3.1252 3.1232 10.166 10.257 1.3128
5153.9 3.2887 3.2887 10.258 10.410 1.3110
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atomic arrangement. We think that fluids subjected to
pressures between 1.35 and 3.29 Mbar must contain
many clusters of densely packed atoms (or molecules).

The application of eq. 4 to the fluid outer core can
be justified by two facts. At pressures around 2.420
Mbar (see Table I) the matter must approach a close-
packed atomic arrangement and, the frequency of the
thermal atomic oscillations is much greater than the
frequency of diffusive transitions, so that the atoms
develop a structure even though this may be transi-
tional. Moreover, in eq. 4 we emphasize that P and «
are corresponding zero-temperature extrapolations.
Since, conversely, from various considerations it fol-
lows that 7 is virtually independent of temperature
(1), even under outer-core conditions, we are justified
in replacing eq. 4 by the approximation

1 (k1 —2) (k1 —3)
+(1/6)|:(2K1 52BNk g 3] ©)

which arises from substituting egs. 1 and 2 in eq. 4.
In Table I numerical values of v are itemized, calcu-
lated from eq. 5 by using the estimates of p, and «,
noted in eq. 3. For the mean of ¥, the variation of
which is only slight in the outer core, we thus obtained
a value of 1.3233. This value is supported by the
results of other workers, who have obtained values
of about 1.4 (Irvine and Stacey, 1975) and 1.5
(Anderson, 1979).

From thermodynamic relationships it follows that

Ky —
3

fy:

(31n T/3 In x)g = —y (6)

This, together with eq. 5, appears to give reliable infor-
mation on the temperature field in the depth range of
the outer core over which the temperature gradient is
widely believed to be adiabatic. Equation 6 may be
rewritten as

X4

T=T, exp[f y(u) %u] @)

X

provided that § = S, = constant. Temperature (T,),
entropy (S,) and volume contraction (x,) relate to
any fixed place within the outer core or at one of its
two boundaries. Hence, incorporating eq. 5, after
integration we have

T=T,[r(x; k)/1(x,; k1)) ®)

where
T(x;xl)Ex‘(””("l“‘)

2y —5 — (kg — 3)x(1/3)("1"2):|1/2
X
[ Ky —2

7(1,k)=1 9)

For the outer core we assume, according to PEM,
the lower and the upper limits of density (), which is
expected to be a monotonous, smooth function of
depth (d) are 9.909 and 12.139 g cm ™3, respectively.
Consequently, recalling eq. 3 and putting 7(6.710/p;
4.555) =715¢(p), p expressed in g cm ™3, for the depth
range 2885.3 <d < 5153.9 km (see Table I} eq. 9
can be modified to

Toc(p) = 0.1[1.7666p*37 — 3.3815p"-518%)1/2

9.909 <p<12.139gcm™3 (10)

We now refer the values 7', and x, in eq. 8 to the
inner-core—outer-core boundary (IOB). Hence p, =
12.139 g cm™3. Since, in view of egs. 8 and 10,

T/T, = toc(p)/Toc(p.) is valid, eq. 8, being the basic
relation for our subsequent discussion, takes its final
form

T = (T105/1000)(349.1957p237 — 668.4082p1-5182)172

9.909 <p<12.139 gem™ (11)

where Tyop = T, denotes a reliable estimate of the
adiabatic temperature at [OB. From this, in particular,
it is easily seen that the temperature T appears to reach
a value at IOB which is ~31% higher than the one at
the core—mantle boundary (CMB).

3. Discussion

Using the volume dependent y we recalculated the
adiabatic temperature according to our method and
found the gradient of adiabatic temperature in the
outer core to be everywhere greater than the gradient
of melting temperature according to Kennedy and
Higgins (1973). From Fig. 1 it follows either that
thermal convection cannot exist anywhere in the outer
core, or that the interpretation of I0B as the melting
point of a material which is uniform both inside and
outside, is incorrect. Convection in a layer of 200—
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Fig. 2. Pictorial representation of the proposal of Stacey
5006 o ] (1972) circumventing the core paradox: inner and outer cores
————————————————— — - differ in their chemical composition so that a jump of the
melting-point versus depth curve occurs.
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Fig. 1. The solid line denotes our adiabatic-temperature curve
using the volume dependence of . The curves of the adiabatic
temperature for several constant y-values are shown as broken
lines, the melting-point curve of iron is a dotted line. The
latter curves are taken from Kennedy and Higgins (1973).

300 km at the bottom of the outer core can be
excluded in any case.

If one considers the melting point—pressure curve
of Higgins and Kennedy (1971) to be the most real-
istic one, then there are the following possibilities to
circumvent the paradox:

(1) Thermal convection and precession as causes of
the geomagnetic field are excluded. Thus, the necessity
to construct a dynamo for a stably-stratified outer
core, or to find another kind of magnetic field genera-
tion, would arise. One approach to obtain a radial
component of stream velocity under these circum-
stances is gravitational differentiation in the outer core
(Loper and Roberts, 1978).

(2) After Jacobs (1976), Kennedy recently con-
sidered the Griineisen ratio for liquid iron in the outer
core to be about 0.1. Thus, adiabatic temperature
would be higher than melting temperature. In this
case, Jacobs’ (1976) theory of the generation of the
fluid outer core, as well as the theory of the thermo-
convective dynamo could be retained. However, a
value as extremely low as 0.1 is in contradiction to all
well known estimates of Griineisen’s ratio for the
outer core. Therefore, we believe that we can exclude
this possibility.

(3) The chemical composition of the inner core dif-
fers from that of the outer core where the melting
temperature at IOB undergoes a jump (see Fig. 2).
Melting temperature is significantly higher inside than
outside, hence an adiabatic temperature curve which
is identical to the actual one lies below the melting
temperature curve in the inner core and above the
melting temperature curve in the outer core. Never-
theless, the adiabatic temperature gradient in the
outer core may exceed the melting temperature gra-
dient. This realistic suggestion was originally made by
Stacey (1972).

Leppaluoto (1973) has stated that the usual
melting-point theories proceeded from solid-state
physics because this is a more advanced science than
the theory of fluids. During melting, however, solid
and liquid are in equilibrium so that both aspects
should be considered as Leppaluoto (1972) has done.
FEquating the free energies of liquid and solid, he deter-
mined a melting-point curve for iron. Figure 3 shows
that, in conjunction with our adiabatic temperature
curve, thermal convection would be possible every-
where in the outer core. In the lower half of the outer
core the temperature would lie immediately above
the melting-point temperature. The activation volume,
however, cannot be determined with certainty, so
that the quality of Leppaluoto’s curve can only be
judged with difficulty.

Boschi (1975) investigated close-packed structures
on model systems of hard spheres, calculating the
melting temperature of iron by means of a Monte-
Carlo prodedure. Figure 4 (broken line 2) shows that
his curve, in conjunction with our adiabatic temper-
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Fig. 3. The broken and dotted line represents the melting-
temperaturg curve by Leppaluoto (1972) for an activation
volume AV" =0.075 cm3 mol™!. The solid line shows our
adiabatic-temperature curve.
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ature curve, permits thermal convection throughout
the outer core where IOB is a melting boundary.
Figure 4 (curves 1) also shows that this process would
be forbidden throughout the outer core for Higgins’
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Fig. 4. The solid line (2) is our adiabatic-temperature curve
which was computed for the case that IOB is a melting bound-
ary and that the melting-temperature curve of iron (broken
line 2) by Boschi (1975) applies. The broken line (1) is the
melting-temperature curve of iron by Higgins and Kennedy

(1971), the solid line (1) is our appropriate adiabatic temper-
ature,

and Kennedy’s (1971) melting-point curve and our
appropriate adiabatic curve.

The polymorphism of iron and, especially, the
influence of the y—e transformation on the phase dia-
gram has been thoroughly discussed by Birch (1972)
and Liu (1975). In contrast to the three melting
curves mentioned above, the influence of the various
phases of iron has been considered by Liu (1975). It
is realistic, for Earth conditions, to restrict the discus-
sion to the well known phases of iron, i.e., to dis-
regard speculations on a distinct minimum of the
melting-point curve of iron (McLachlan and Ehlers,
1971) the more so as Bukowinski (1976) has proved
that the change of the electronic structure to a 3 d®
state occurs at a compression of approximately four
times that at the inner-core boundary. Liu (1975) has
concluded, from the extrapolation of experimental
data, that the triple point of face-centered cubic (),
hexagonal close-packed (€) and liquid iron is at
0.94 + 0.20 Mbar and 2970 + 200°C (see Fig. 5). The
calculation of the epsilon-liquid boundary, however, is
critical. Figure 5 shows that this boundary approaches
our adiabatic curve which we again calculated assuming
that IOB corresponds to the liquid—solid transition of
a material that is uniform inside and outside. Thus, as
in the case of Liu’s (1975) melting-point curve, ther-
mal convection would be possible.

A second method for estimating the volume depen-
dence of Griineisen’s ratio v has been developed
involving the electronic contribution to 7. In spite of
other theoretical premises, the new curves of adiabatic
temperature as functions of pressure differ only slightly
from those of Figs. 1, 3, 4 and 5 which have been
computed by using M1 and the Vashchenko—Zubarev
€1963) formulation. Hence the conclusions on the pos-
sibility of thermal convection in the outer core alter in
one case only, namely, in that of Liu’s (1975) melting-
temperature curve, in the derivation of which the
known phase transitions of iron have been considered.
Figure 6 demonstrates the impossibility of thermal
outer-core convection, presupposing the validity of
this curve and the recent theory of volume depen-
dence of vy mentioned above.

4. Conclusions

We believe we have shown that, mainly owing to
the existing uncertainty regarding melting-point
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Fig. 5. Broken lines represent the phase boundaries between «, v, §, ¢ and liquid iron after Liu (1975). The solid line is the appro-

curves, the last word on the core paradox has not yet
been spoken. It is to be expected that the 10—20% of
other materials added to the main constituent iron
reduce the absolute value of the melting point by
some 100°C, and lower the gradient of the melting-
point curve. This is true, independent of whether FeS,

FeO or MgO is considered as the light-weight compo-
nent. Boschi’s (1975) melting-point curve of iron is an
extreme upper bound. By slightly lowering the melting
temperature and its gradient in Boschi’s (1975) curve
we obtain melting curves of the mixture which resem-
ble those of Leppaluoto (1972), Liu (1975) or Higgins
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Fig. 6. Broken lines represent the phase boundaries between o, v, 8, € and liquid iron according to Liu (1975). The solid line is the
appropriate adiabatic temperature taking into consideration the electronic part of the Griineisen ratio.
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and Kennedy (1971), depending on the mixture ratio
assumed and on the additional compounds. From this
it follows that even if we knew the exact law of pres-
sure dependence of the melting temperature it would
be impossible to compute the actual effective melting-
point curve because of our ignorance of the chemical
composition of the admixture with the main constitu-
ent iron. That is the reason for the uncertainty over
whether the outer core is stably stratified or not. A
better melting theory and deeper insight into the chem-
ical composition of the outer core are necessary. One
conclusion, however, can be drawn with certainty: if
the melting-point curve of Higgins and Kennedy
(1971) and our theory of v apply, and if the inner
and outer cores are chemically equal, then thermal
convection (in contrast to Kennedy’s and Higgins’
paper of 1973) is forbidden throughout the outer
core, even in the layer near the IOB.
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