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Three theories that are of importance for planetary physics are examined by establishing whether the curves in
the pressure —density diagram which have been calculated from the appropriate equations of state satisfactorily
describe the dynamic and static data obtained for cubic solids. For this purpose, the fourth-order anharmonic theory
derived from lattice dynamics, a theory based on the Eulerian formulation of finite strain, and a new theory as out-
lined in Section 2 have been compared. It is found that the new theory yields results that show the best agreement

with the measured values.

1. Introduction

It is an essential prerequisite for planetary physics
to have good equations for the description of pres-
sure—volume data for materials subject to high pres-
sure in order to permit reliable extrapolations in the
high-pressure regions which hardly lend themselves
for experiments. [t is the objective of the present
paper to compare a new theory by Ullmann with the
fourth-order anharmonic theory by Leibfried and
Ludwig (1961) and Thomsen (1970), and with a
theory based on the fourth-order Eulerian formula-
tion of finite strain in respect of its suitability for the
description of empirical shock and static compression
data. To avoid any subjective selection of observation
data, we consciously confine ourselves to the compres-
sion data of 17 cubic solids that have been used by
Ahrens and Thomsen (1972) in their thought-provok-

ing paper.

.1 ZIPE Contribution No. 578.
2 On leave from Institute of Physics of the Earth, Moscow,
Bolshaya Gruzinskaya 10, U.S.S.R.

2. The new theory

We consider a macroscopic body which is assumed
to be a physically-homogeneous thermodynamic sys-
tem. Thus, an equilibrium state of this body can be
represented by the pressure P, the volume ¥ and the
entropy §, each of these state variables depend-
ing on the two others. In the initial state of the body
let P, ¥, S take the values 0, Vy, S, respectively.
Hence, using the volumetric contraction x = ¥/V,,
the equation of state of the body may be written in
the general form of:

P= —y'(x}3/ay)Y(y, 5)

where Y(y, §) stands for the strain energy, measured
per volume Fy of the uncompressed body, as a func-
tion of § and a dimensionless variable y depending on
x. We note that, necessarily, ¥(x) < 0, dy/dx = »'(x)
>0and Y(y, 5) >0 for x <1 and, without loss of
generality, »(1) = 0,'(1)= 1 and ¥(0, Sp) = 0.
Besides, we observe that ¥(y, ) simultaneously
means the internal energy of the body in the equilib-
rium state {P, ¥, S}, measured per volume V.

The functions ¥(y, §) and y(x) are assumed to be
continuously differentiable with respect to y and x,
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respectively, as many times as required. So the bulk
modulus k = k(P, S) is continuously differentiable
with respect to P up to any order required. For
further convenience we put:

Ko =k, So) ,

Kkn = K5 H("/3P")K(O, So)

and

Y2 Sk '(3"72/0y") Y0, So)

forn=1,.., N+ 1, where the integer V is arbitrarily
fixed. In particular:

(3/3») Y0, So) =0 and (3%/3y*) Y(0, So) = ko

Then, if y(x) is chosen, Y,,., proves to be a poly-
nomial in the n material parameters ky, ..., k,,. Atten-
tion is now confined to adiabatic changes of the
body so that S = §,. Using Taylor’s theorem, we thus
have:

N
Y,

)
where Ry, is the remainder and Y49 = Y40 (K,
K,) as remarked.

For instance, the function y = 3)(1 —x™2/%) helps
to obtain:

sy

N
Y

Prdp (x 73— x5/3 [1+ > (3yr 12

il O @ e

X (1 —x'2/3)":| )

which is Birch’s (1947, 1952) approximation of the
equation of state: In particular:

Y;=4—«,

and

Ya=3+ (B -k )4 —Ky)+ky

Further, from y = 3(1 — x ™"/3) we obtain:

P~ 3K0(x—5/3 _ x—4/3)

N
Y+2
1+ e
X[ ,12:’13 G+ 1)

which comes close to Bardeen’s (1938) approxima-

(1 —x 1y ®

tion of the equation of state for the alkali metals.
Here, in particular:

Y3=3 ¥,

and

Yy=3 +Q2—x)B — k1) +ko

Finally, the “Lagrange finite-strain scalar”:
y=3E3 1)

used by Thomsen (1970, 1972) leads to:

Pk (x1B — x173)
- Y

which, however, is unsuitable as shown by Pan’kov
and Ullmann (1975). Instead the Bardeen and, above
all, the Birch equation has proved its worth for gain-
ing information on the compressional behaviour of
substances geophysically relevant.

It can be shown (see Ullmann and Pan’kov, 1976)
that the coefficients ¥,4,, n=1, ..., N, in eq. 1 vanish
by introducing y as a function of x and the N param-
eters Ky, ..., Ky, written y = oy (x;K ¢, ..., k), which
satisfies the /V initial conditions:

y2=-5(1+ky) ®)

and, in case of 1 <n<N:

2]
2
1 nt2
Y1 = 5 {sz -2 lk( )ykyn+2—k:|:
n+2 k=2 k )
©
where for convenience (3™ /dx™) pn(1; k1, .., Ky7)

is denoted by y,,. As usual ['%—7'] stands for the
greatest integer not greater than (n + 2)/2. The symbol
Iy is defined by the rule: I = 1 for k < (n + 2)/2,

Iy = 1/2 for k= (n + 2)/2. The quantity X,;,, depends on
K1 - Kn, 8O it may be compared to ¥,,45 = Y40 (K4,
-s Kp) and is identical with it, if y in eq. 1 is replaced
byx — 1. In particular:

Xa=(1+K)2+Ky) +k,y @)
Xs=—(1+k)2+x)3B+ky)
—2(3+2K1)Ky — K3 ®)
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Consequently, formula (1) can be reduced to:
Y(y, 8)= (1/2)k0y> + Ry+3

We see that the strain energy Y(y, S) is approximately
a pure quadratic function of ¥ = o (x;K 1, .., Kpy) if

| R+ 3l is negligibly small in comparison with the term
(1/2)koy? . Since the physical quantity Ry, 3 is incal-
culable by exact mathematical procedure or by assess-
ment based upon very general conditions, the validity
of [Ry+3l << (1/2)koy? can be learned only on using
data. Hence, returning no strong argument, we suppose
that the remainder Ry, 3 sufficiently approximates

Ko Y3y T3/ + 3)! and, in place of eq. 1, write:

2.
Y(y, 8) ~3Kkoy* [1 ¥ W3 Yynez y M l:l ©)

From the initial conditions for the function y = ¢p(x;
K1, .- Kpv) it follows in addition that:
(3

2

N+3
Ynes3 = Xniz— kZ)l lk(

x )ykyN+3—k (10)
where X, 3 is a polynomial in k 15 ..., Ky and Kp4q
(see above). Therefore, if Y43 ~ 0 then an approxi-
mate relation between k4 and Ky, ..., Ky comes
true. For instance, in the case of N =1 we have:

3

0
Ye=3(1+xk)(5+2K1) Ky —4{)?%(1;'(1) (11)

and in the case of N=2:

Ys=— g5 (1+k,)(83+55k, +8k?)
—$(1+19% Ky — k3 — 5@ 02 (1K1, K2)

In order to obtain a form of y leading to a suitable
expression for this variable in the concrete, NV subsidi-
ary quantities uy, ..., u are now introduced, where
u,, is to be a function of K, ..., k,,, i.e. U, = up(k,,
v Kp) =1, ..., N). Thus we write y = fy (x; uy, ...,
up). Practically, only a few values for k, reliable to
some extent are available, and we are furthermore
wanting information on k3 gained from experimental
values. Compared to it, almost all the data required
for the determination of k, are reliable at the very
least for our purpose. It is hardly necessary to note
that ko does not give rise to objections. It is, there-
fore, expedient to confine our attention to the two

cases that /V takes the values 1 and 2, respectively. We
must now turn to the question how to decide in the
concrete on the function f; (x;u,), since an infinite
set of such functions having the same properties
characterizing f; (x; u;) are available. Being concerned
with it, we refer to the two approximations (2) and
(3) which are closely connected with the well-known
equations named after Birch and Bardeen. We are of
the opinion that the mathematical expression of
f1(x;u;) must prove to be most simple and, in par-
ticular, the approximation:
1

P =KoY 2_1 [l + E]V—+2_)' YN+3yN+1} (13)
resulting from eq. 9 in the case of N = 1 has to be true
to the type of equations, which are used by preference
even now.

Consequently, we consider the case of N= 1 with
the function

y=f1(x;u1)=u—ll @ - 1) (14)

From this, using eqs. 5—7 and 11, we obtain:

u =302 —-x1), K;>2 @15)

and

Ys=—(1/9)(1 + k)1 —2k;) + &,

Evidently, Y, = 0 is equivalent to:

Ky =51+ k)1 — 21) (16)

which proves to be true for different substances rele-
vant to planetary physics (see Ullmann and Pan’kov,
1976). Thus, from eq. 13 for N=1:

P 3Ko (x1/3~r2/3x1 _x—1/3—1/3x1) a7
2— K1y
which is equivalent to Birch’s standard equation in
the case of k; =4 and can be recognized as the
shortened form of Bardeen’s equation when k; = 3.
Moreover, supposing Y, =~ 0, we have k3 ~ —35/9
from eq. 2 for k; = 4 and k, ~ —20/9 from eq. 3 for
k1 = 3 as immediately results from eq. 16.

Since eq. 17 provides rather satisfying information,
the use of the case N='2 can be understood only for
a desirable extension of the hitherto existing informa-
tion volume. It is obvious that the correlations of the
two cases must be governed by the associated func-
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tions fy (x;u, ) and f; (x5 14, u,) for the variable y.
Turning our attention to the case of N =2, we shall
only deal with some main results. For details see Ull-
mann and Pan’kov (1976). The variable y is now
expressed as:
y=fa(xiug, )= f0cuy) explug (1 —x + Inx)]
(18)
which evidently agrees with eq. 14 for u; = 0. From
this, using eqs. 5—8 and 12, it follows that

uy = 1y [§(1 + k)1 — 2k) — k2] (19)
and
Ys = (1 + k)3 k01— 2k,)

— 53+ Tk )k — K3 (20)

Hence, in view of eq. 13 with N = 2:
_kKe
iy

P (x2ul--1 _xu|—1)

(1)
% [1 +_‘_f’1._{] —x)(1 _x"'“l)]n(x;ul,xz,r{a)
uy

where

A(xiry kg, Ka) = exp[2u,(1 —x +1nx)]

uy 3
xt—=1

1.1]/ (__..,_)

3 u

Xexp[Suy(1 — x +Inx)] (22)

If eq. 19 comes true so that u, is very small, taken
absolutely, and k3 = —2Kk K, is supposed to be reli-
able, then we have ¥5 =0, and eq. 21 reduces to eq.
17. Since values of x5 resulting from laboratory
experiments solely are, at present, not yet available,
we are thrown back upon possibly reliable conjec-
tures connected with this problem. Therefore, the
assumption of k3 = —2k Kk, seems to be rather
speculative. The reason why we nevertheless make
reference to it is that the same relation arises from
quite another theoretical aspect due to our modifica-
tion of Keane's (1954) treatment, which recently
gives rise to discussion. This modification will be dealt
with in a separate paper.

3. Other theories

Two approximations of the equation of state of
the new theory are used: eq. 17 has been denoted by
model I, and eq. 21 with ¥5 =0 by model 2. The
theoretical reference curves have been taken from
Ahrens and Thomsen (1972). From lattice-theoretical
considerations the fourth-order anharmonic equation
of state was derived, which is written as follows for
isothermal compression data:

= _3K(Vlllrl?)—].-'3 n %rnz +%An3}
+(Us/ (VI35 + 300 — 730 — TCp{ Ug) 1]
(23)

where V, KT, f\, “, \ are constants and -i:l’_g and Cn‘p
functions of temperature, and where:

n =4V - 1) (24)

The curves of this isothermal equation of state (23)

of the Lagrangeian anharmonic theory are denoted in
the figures by T, the Hugoniot curves of this theory
by H. According to Ahrens and Thomsen (1972), the
illustrations show the room-temperature isotherm
curves I, for which the Eulerian formulation of finite
strain (see Barsch and Chang, 1971) have been used.
The corresponding equation of state is:

P=3kox e — ge? + FAge? (25)
where

e=—3(x7*2-1) (26)
Me=k, -4 27
Ag= ko + ik — 7) + 182 {28)

Eqs. 2 and 25 can be identified. We, however, have
repeated the notation of Barsch and Chang (1971)
here.

4. The estimation of the Hugoniot pressure

The available experimental data required for testing
the new theory are, mainly, shock-compression data.
Therefore, in order to obtain the theoretical Hugoniot
the pressure from our models must be corrected by
adding the thermal pressure (the difference between
the Hugoniot and the isotherm or adiabat curves), It
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has been customary to describe the Hugoniot curves
with the help of the Mie-Griineisen equation of state
and the Rankine-Hugoniot conservation laws. Using
our models together with the Mie-Grilneisen equation
we would point out that the special problems concern-
ing their mutual consistency may be essential { Thom-
sen, 1969; Thomsen and O.L. Anderson, 1971), Here,
at least, we regard the equations of our models as pos-
sible extrapolated formulae describing the compres-
sional behaviour of solids within some radius of con-
VErgence X = Xpin-

For convenience, model I is primarily used to
compute the isentrope starting from the initial point
P =0, T =300 K. The adiabatic values of the param-
eters kg and &, listed in Table I are based on the data
of Ahrens and Thomsen (1972). The value of &,
(adiabatic—adiabatic pressure derivative of the bulk
modulus) was obtained by the transformation of
(0K g/aP)r to (3kg/dF)g. Furthermore, for periclase
we have used the value of (3kg/dP)r =~ 4.25 (see
Mao, 1974).

From the Mie-Griineisen equation and the Rankine-
Hugoniot energy-conservation equation we obtain -

TABLEI
Material parameters employed

Mate- Kp K] Yo q

rial (kbar)

Li 120.0 3.33 0.B8 5.8

Na 69.9 3.60 1.22 1.1

K 33.3 3.80 113 0.05
Cu 1369.7 5.49 1.98 1.2

Ag 1036.0 6.15 2.34 0.6

Au 1726.0 6.27 2.95 1.7

Al T64.0 4.46 213 1.8

LiF 696.3 4.95 L&3 1.2
NaF 482.0 5.02 1.51 1.2

NaCl 2521 5.05 1.63 1.1

MaBr 208.3 5.04 Lel 1.6
MNal 162.2 5.25 1.74 0.8

CsCl1 181.3 5.44 2.02 1.6

CsBr 156.0 5,53 L.68 1.9

Csl 126.2 5.49 L.69 1.5

MgO 1628.0 4.21 1.53 1.1

not used

BeO 2186.0 5.31 L.26

as usually — the Hugoniot pressure:

Ax, o) %Y(.V»So)
Py=——— (29)
1-X(1-x)
2x

where Px, S;) and Y(y, Sy) are the corresponding
adiabatic expressions for which model J is used, For
the estimation of the Griineisen parameter y asa
function of volume we use the simple formula (O.L.
Anderson, 1974):

v =vex? (30)

where 7o denotes the value of yatx = 1.
The value of ¢ is computed by means of the thermo-
dynamical expression (0.L. Anderson, 1974):

_ ks (3J¢S)

=5=-|=—=] +1+ 31
q o P/, Yo (31)
where

5= 1 (aks)
Caxg\ 3T/ p

is the Anderson-Griineisen parameter and all values
are referred to the ambient conditions. The values g
based on the same data as in Ahrens and Thomsen
(1972) are given in Table |. Some of the estimated g
seem to be questionable such as in the cases of Li, K,
Ag and BeO, The value for NaCl is in good agreement
with the experimental result from Boehler et al, (1977).
The uncertainty in the problem of the Griineisen
parameter (O.L. Anderson and Mulargia, 1977) is
essential for any estimation of the thermal pressure
and, therefore, for the conclusions on the quality of
theories of compression. Nevertheless, the possible
deviations of the theory from the Hugoniot data can
tentatively be estimated since the thermal pressure
correction is usually of the order 10—20% in P at high
compression. That corresponds to 2—4% in x.

5. Discussion

In Fig. 1A—Q two curves have been computed and
drawn, the lower curve being the isentrope M1S and
the upper curve being the shock adiabat M1H which
we computed using both model J and the Mie-
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Fig. 1. In (A) to (Q) MIS is the isentrope of model 1, MIH is
the Hugoniot computed by means of model I and the Mie-
Griineisen equation. Model I is based on the new theory out-
lined in Section 2. H is the Hugoniot in the anharmonic theory,
T is the corresponding isotherm (eq. 23). T'g stems from the
Eulerian theory. Curves M1S and MIH have been calculated
by us, curves H, T and Tg by Ahrens and Thomsen (1972).
Open symbols are static compression data, solid symbols are
shock-wave data.

Sources of the experimental data:

[1] = Van Thiel (1966); [2] = Walsh et al. (1957); [3] =
Al’'tshuler et al. (1958); [4] = Al'tshuler et al. (1960a); [5] =
McQueen and Marsh (1960); [6] = Berger and Fauquignon
(1964); [7] = Isbell et al. (1968); [8] = Kormer et al. (1965);
[9] = Altshuler et al. (1963); [10] = Rice (1965); [11] =
Bakanova et al. (1965); [12] = Vaidya et al. (1972); [I3] =
Bridgman (1938); [14] = Bridgman (1948); [15] = Al'tshuler
et al. (19600); [16] McQueen et al. (1970); [17] = Roy and
Steward (1969); [18] = Carter et al. (1971); [19] =G.G.
Anderson et al. (1965).

Griineisen equation. The obtained values of the
thermal pressure correction are comparable or some-
what greater than the values from the anharmonic
theory except for the three cases Li, Ag and BeO in
which the estimated values of g seem to be doubtful
(Table I). We do not show the Hugoniot M1H for BeO
(Fig. 1Q) because of the negative value of g but the

deviation of our theory from the data is evident in
this case.

Like Ahrens and Thomsen (1972) we give the
minimum values of x = x,;, (see Table II) from the
requirement of agreement between the theory and
the Hugoniot data in limits of 1% in x. The maximum
x-difference between the theories and the Hugoniot
points is shown in Table II, as well.

Based on the results presented we may conclude
that model I corrected for the Hugoniot pressure gives
rather good results for nine substances (Li, Na, Al,
NaF, NaBr, Nal, CsCl, CsI and MgO). The greatest
deviations are obtained for five substances (K, Ag, Au,
BeO and CsBr). Medium results are found for Cu, NaCl
and LiF.

In the case of K there is a special uncertainty in the
choice of the input value of ko (Grover, 1971) as well

TABLE II

The results of the comparison of the theories with the
Hugoniot data

Materials X pin ("1 axfx @)

new anhar- new anhar-
theory monic theory  monic
theory *3 theory
Li 0.63 0.63 27 27
Na 0.6-0.7 0.72 +1 )
K 0.25-09 0.7 +3 -1.3
Cu 0.8 () 0.68 +14 27
Ag 0.75 +5.8  —1.2
Au 0.8 0.72 +36 15
Al 0.64 0.72 0. -3
LiF 0.75 0.69 +1.5 -39
NaF 0.75 ** 0.79 0. -1.7
NaCl 0.75 0.71 +12 15
NaBr 0.64 ** 0.9 () +0.8 44
Nal 0.62 ** 0.75 +0.7 -2.3
CsCl 0.64 ** 0.85 0. —4.7
CsBr 0.8 0.80 -45  -17
CsI 0.61 ** 0.67 0. -3.7
MgO 0.71 ** 0.76 0. ~14
BeO 0.81 +7.6 0.

*Atx > Xmin the agreement between the theory and data
is within 1%.

*; Maximum deviation from t:e Hugoniot data.

** Given by Ahrens and Thomsen (1972).

*4 End of the data or a phase transition.



11

Draft

as in the estimated value of g as was noted previously.
Using the value of kg = 30 kbar and the more usual
value of ¢ = | would give the agreement of our theory
with the data.

As to BeO Ahrens and Thomsen (1972) pointed
out that the ultrasonic data seem to be incorrect.
Moreover, they remarked the possibility of a phase
transition near 1.1 Mbar (see Fig. 1Q). The value of
k4 obtained by Ahrens and Thomsen (1972) by fitting
the data at a lower pressure is also unreasonably small.

Applying model [ to the substances with k; values
near 5 or more we must be careful as can be seen from
the different results for alkali halides (see Table LI).
For metals with k4 < 5, however, model 7 systemati-
cally overestimates pressure-yielding curves which are
very close to the Hugoniot data at x = 0.8. Itis
obtained here for Cu, Au and Ag, and was shown
earlier (Ullmann and Pan’kov, 1976) for other metals
(Zn, Cd, Pb, Ni, Nb, Sn). In all such cases model 2
may successively be used by choosing, correspondingly,
the values of k, between approximately —10 and
—20. Then the thermal pressure correction is esti-
mated more or less satisfactorily.

Similar to model 7 in the cases of greater values of
#y some other equations of state used will give the
deviations from the data. In particular, the Born-
Mayer equation {Zharkov and Kalinin, 1971) and
Born-Mie power equation will also overestimate the
pressure values,

Birch's equation which is based only on the param-
eters Kq and &, gives almost the same results as model
I for the usual range of k; between 3 and 6 (Ullmann
and Pan’kov, 1976). The Eulerian curves T in Fig.
1A—Q representing the Birch isotherms were com-
puted by Ahrens and Thomsen (1972) taking into
account the term which includes the value of k3, They
showed that the influence of this value is small but
not neglegible. In fact, the influence of some uncer-
tainty in x, for many cases may be compared with
the uncertainty in the thermal pressure correction.

For the anharmonic theory the parameter k is
much more important, but it is very difficult 1o
obtain this value from ultrasonic measurements. [f
we use the values of i, from the relation (16) of
model ! for the anharmonic theory, the results of
both theories for the usual x-range ( x > 0.5) will
differ from each other by a value of 1-5% in x. The
usual deviations of model J and the anharmonic

theory from the data are in the opposite direction,
Except for the cases of BeO, Au, NaF, NaBr and NaCl
the values of k5 used by Ahrens and Thomsen are
satisfied by relation (16) of model 7 in limits +2.
Therefore, we may approximately compare the results
of both theories. However, due to the uncertainty in
the choice of more correct values of k4 and in the
Grilnejsen parameter it is difficult to say which theory
is to be preferred, The use of model 2 may bring
almost the same results as the anharmonic theory.

6. Conclusions

The results of comparing model 7 with the
Hugoniot data represented in Fig. 1A—0Q and in
Table I show that this model predicts the volume
at high pressure (for x < 0.6) with an error smaller
than about 5%. Model ] usually tends to overestimate
the pressure values. In many cases the prediction of
model [ is better than 1% in x, Birch’s equation of
state, using the same values of ko and k, gives approx-

TABLE Il

A comparison of experimental and theoretical data.

Material Fig.

New theory Anharmonic
(model [} theory

Li 1A * %

Na 1B "

K 1C X

Cu 1D X X

Ag lE by

Au 1F w7 % 7

Al 1G *

LiF 1H X X

NaF 11 X X

NaCl 1] X X

NaBr 1K ®

Nal 1L X

CsCl iM X

CsBr IN x

Csl 10 x

MzO P X X

BO 19 X7

Crosses mean a good agreement of the corresponding curves
with the Hugoniot data. For the static values of Csl the
anharmonic thegry gives agreeable results.
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imately the same results. The curves of the anharmonic
theory deviate from the Hugoniot data in the opposite
direction on pressure and give an error of the same
order. Although the choice of the preferable theory

is difficult, we nevertheless would like to show by
means of Table I1I which theory gives the best agree-
ment with the Hugoniot data. For metals with k,

= 5 model I systematically deviates from the data at
rather moderate pressures, The use of model 2 in

these cases will give better results.

From the geophysical viewpoint it seems to be pos-
sible to apply different approximations for the equation
of state to the substances which are relevant for the
lower mantle where the value of & is near 4. Some
advantage of model ! and Birch's equation consists
in not using the values of k,. We must, however, be
careful about applying the different theories to the
earth’s core where k, may be near 5 or more. Finally,
we would also like to remark that up to now the
accuracy of the current approximations for the equa-
tion of state is not sufficient to describe correctly the
modern models of the earth from free-oscillation
data. An important theoretical problem is the volume
dependence of the Griineisen parameter, However,
without further accumulation and improvement of
the experimental information on ultrasonie, static
and shock-wave compression, it is difficult to test any
reasonable equation-of-state theory.
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