Versuch - Ultraschall

Bestimmung der P- und S-Wellen-Geschwindigkeit von Gesteinen im Labor mittels Impulsverfahren

Vorbereitung

- physikalische Grundlagen
- petrophysikalische Grundlagen
- Versuchsaufbau, Methodik

Versuchsdurchführung

- Kontrolle der Laufzeit / Korrekturzeit des Messsystems am Laufzeitnormal
- Experimentelle Bestimmung der Longitudinalwellengeschwindigkeit V_P für mehrere Laufwege und verschiedene Orientierungen mittels Transmissionsmessung (jeweils 4 Wdh.-Messungen)
- Experimentelle Bestimmung der Transversalwellengeschwindigkeit V_s für mehrere Laufwege und verschiedene Orientierungen mittels Transmissionsmessung (jeweils 4 Wdh.-Messungen)
- Speicherung aller gemessenen Ergebnisse auf dem Computer

Ergebnis

Tabelle:

Gestein	Dichte	Laufweg	Laufzeit	Laufzeit	V_P	V_S	ν	E-Modul	G-Modul
	[g/cm ³]	[cm]	(Dehnwelle)	(Scherwelle)					

- Bestimmung der elastischen Parameter E, G, ν unter Verwendung der im Versuch ermittelten P- und S-Wellengeschwindigkeit sowie der Dichte (Probe 1 ρ =1,139 g/cm³; Probe 2 ρ = 2,3 g/cm³; Probe 3 ρ = 2,1 g/cm³; Probe 5 ρ =2,1 g/cm³; Probe 6 ρ =2,7 g/cm³) für verschiedene Orientierungen.
- Darstellung und Diskussion möglicher Anisotropie-Effekte
- Hinweis auf verwendete Frequenzen
- Fehlereinflüsse